Carboxypeptidase U (TAFIa): a metallocarboxypeptidase with a distinct role in haemostasis and a possible risk factor for thrombotic disease

2005 ◽  
Vol 94 (09) ◽  
pp. 471-487 ◽  
Author(s):  
Judith Leurs ◽  
Dirk Hendriks

SummarySince the discovery of Carboxypeptidase U (CPU) in 1988, considerable information has been gathered about its biochemistry and function in physiological and pathophysiological circumstances. A variety of tools such as assays to measure proCPU and CPU, antibodies raised against (pro)CPU, selective CPU inhibitors and knock-out mice have been developed and are currently being used to explore the role of this metallocarboxypeptidase in different in vivo and in vitro settings. The knowledge that proCPU can be activated by thrombin and plasmin, enzymes with a key function in coagulation and fibrinolysis, and the ability of CPU to remove C-terminal lysine residues has led to the hypothesis that the proCPU/CPU pathway plays a role in the balance between coagulation and fibrinolysis. The maintenance of the equilibrium between coagulation and fibrinolysis is crucial for normal haemostasis and disturbance of this delicate balance can lead either to bleeding tendency or thrombosis. This review provides an update on several aspects of CPU known at the moment, including an extensive overview on the clinical studies performed up till now.J. Leurs is a research assistant of the Fund for Scientific Research Flanders (FWO-Vlaanderen).

2014 ◽  
Vol 395 (2) ◽  
pp. 181-202 ◽  
Author(s):  
Lars T. Joeckel ◽  
Phillip I. Bird

Abstract Granzymes are serine proteases mainly found in cytotoxic lymphocytes. The most-studied member of this group is granzyme B, which is a potent cytotoxin that has set the paradigm that all granzymes are cyototoxic. In the last 5 years, this paradigm has become controversial. On one hand, there is a plethora of sometimes contradictory publications showing mainly caspase-independent cytotoxic effects of granzyme A and the so-called orphan granzymes in vitro. On the other hand, there are increasing numbers of reports of granzymes failing to induce cell death in vitro unless very high (potentially supra-physiological) concentrations are used. Furthermore, experiments with granzyme A or granzyme M knock-out mice reveal little or no deficit in their cytotoxic lymphocytes’ killing ability ex vivo, but indicate impairment in the inflammatory response. These findings of non-cytotoxic effects of granzymes challenge dogma, and thus require alternative or additional explanations to be developed of the role of granzymes in defeating pathogens. Here we review evidence for granzyme cytotoxicity, give an overview of their non-cytotoxic functions, and suggest technical improvements for future investigations.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1330
Author(s):  
Filipe Pinto ◽  
Liliana Santos-Ferreira ◽  
Marta T. Pinto ◽  
Catarina Gomes ◽  
Celso A. Reis

Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 3997-4002 ◽  
Author(s):  
Dirk Meyer ◽  
Carsten Schiller ◽  
Jürgen Westermann ◽  
Shozo Izui ◽  
Wouter L. W. Hazenbos ◽  
...  

Abstract In autoimmune hemolytic anemia (AIHA), there is accumulating evidence for an involvement of FcγR expressed by phagocytic effector cells, but demonstration of a causal relationship between individual FcγRs and IgG isotypes for disease development is lacking. Although the relevance of IgG isotypes to human AIHA is limited, we could show a clear IgG isotype dependency in murine AIHA using pathogenic IgG1 (105-2H) and IgG2a (34-3C) autoreactive anti–red blood cell antibodies in mice defective for FcγRIII, and comparing the clinical outcome to those in wild-type mice. FcγRIII-deficient mice were completely resistent to the pathogenic effects of 105-2H monoclonal antibody, as shown by a lack of IgG1-mediated erythrophagocytosis in vitro and in vivo. In addition, the IgG2a response by 34-3C induced a less severe but persistent AIHA in FcγRIII knock-out mice, as documented by a decrease in hematocrit. Blocking studies indicated that the residual anemic phenotype induced by 34-3C in the absence of FcγRIII reflects an activation of FcγRI that is normally coexpressed with FcγRIII on macrophages. Together these results show that the pathogenesis of AIHA through IgG1-dependent erythrophagocytosis is exclusively mediated by FcγRIII and further suggest that FcγRI, in addition to FcγRIII, contributes to this autoimmune disease when other IgG isotypes such as IgG2a are involved.


2021 ◽  
Author(s):  
Bin Qiu ◽  
Zhaohui Zhong ◽  
Shawn Righter ◽  
Yuxue Xu ◽  
Jun Wang ◽  
...  

Abstract FK506-binding protein 51 (encoded by Fkpb51) has been associated with stress-related mental illness. To identify its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assist morphological analysis identified that Fkbp51 knock-out (KO) mice possess more elongated CA and DG but shorter in height in coronal section when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls, pharmacological manipulation experiments suggest that this may occur through regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support that FKBP51 regulates microtubule-associated protein expression. Furthermore, in the absence of differences in mRNA expression, Fkbp51 KO hippocampus exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory of Parkin by FKBP51 and significance of their interaction on disease onset.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


1998 ◽  
Vol 274 (1) ◽  
pp. H27-H34 ◽  
Author(s):  
William F. Jackson ◽  
Kevin L. Blair

We examined the functional role of large-conductance Ca2+-activated K+(KCa) channels in the hamster cremasteric microcirculation by intravital videomicroscopy and characterized the single-channel properties of these channels in inside-out patches of membrane from enzymatically isolated cremasteric arteriolar muscle cells. In second-order (39 ± 1 μm, n = 8) and third-order (19 ± 2 μm, n = 8) cremasteric arterioles with substantial resting tone, superfusion with the KCa channel antagonists tetraethylammonium (TEA, 1 mM) or iberiotoxin (IBTX, 100 nM) had no significant effect on resting diameters ( P > 0.05). However, TEA potentiated O2-induced arteriolar constriction in vivo, and IBTX enhanced norepinephrine-induced contraction of cremasteric arteriolar muscle cells in vitro. Patch-clamp studies revealed unitary K+-selective and IBTX-sensitive currents with a single-channel conductance of 240 ± 2 pS between −60 and 60 mV ( n = 7 patches) in a symmetrical 140 mM K+ gradient. The free Ca2+ concentration ([Ca2+]) for half-maximal channel activation was 44 ± 3, 20 ± 1, 6 ± 0.4, and 3 ± 0.5 μM at membrane potentials of −60, −30, +30, and +60 mV, respectively ( n = 5), with a Hill coefficient of 1.9 ± 0.2. Channel activity increased e-fold for a 16 ± 1 mV ( n = 6) depolarization. The plot of log[Ca2+] vs. voltage for half-maximal activation ( V ½) was linear ( r 2 = 0.9843, n = 6); the change in V ½ for a 10-fold change in [Ca2+] was 84 ± 5 mV, and the [Ca2+] for half-maximal activation at 0 mV (Ca0; the Ca2+ set point) was 9 μM. Thus, in vivo, KCa channels are silent in cremasteric arterioles at rest but can be recruited during vasoconstriction. We propose that the high Ca0 is responsible for the apparent lack of activity of these channels in resting cremasteric arterioles, and we suggest that this may result from expression of unique KCa channels in the microcirculation.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


2007 ◽  
Vol 204 (13) ◽  
pp. 3103-3111 ◽  
Author(s):  
Brian G. Petrich ◽  
Patrizia Marchese ◽  
Zaverio M. Ruggeri ◽  
Saskia Spiess ◽  
Rachel A.M. Weichert ◽  
...  

Integrins are critical for hemostasis and thrombosis because they mediate both platelet adhesion and aggregation. Talin is an integrin-binding cytoplasmic adaptor that is a central organizer of focal adhesions, and loss of talin phenocopies integrin deletion in Drosophila. Here, we have examined the role of talin in mammalian integrin function in vivo by selectively disrupting the talin1 gene in mouse platelet precursor megakaryocytes. Talin null megakaryocytes produced circulating platelets that exhibited normal morphology yet manifested profoundly impaired hemostatic function. Specifically, platelet-specific deletion of talin1 led to spontaneous hemorrhage and pathological bleeding. Ex vivo and in vitro studies revealed that loss of talin1 resulted in dramatically impaired integrin αIIbβ3-mediated platelet aggregation and β1 integrin–mediated platelet adhesion. Furthermore, loss of talin1 strongly inhibited the activation of platelet β1 and β3 integrins in response to platelet agonists. These data establish that platelet talin plays a crucial role in hemostasis and provide the first proof that talin is required for the activation and function of mammalian α2β1 and αIIbβ3 integrins in vivo.


2007 ◽  
Vol 18 (5) ◽  
pp. 1609-1620 ◽  
Author(s):  
Diana Caracino ◽  
Cheryl Jones ◽  
Mark Compton ◽  
Charles L. Saxe

Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3147-3147 ◽  
Author(s):  
Peter L. Turecek ◽  
Jürgen Siekmann ◽  
Herbert Gritsch ◽  
Katalin Váradi ◽  
Rafi-Uddin Ahmad ◽  
...  

Abstract Chemical modification of recombinant therapeutic proteins with PEG has been shown to enhance the biological half-life. Here we assess the effect of PEGylation on FVIII. Full-length rFVIII bulk drug substance from protein-free fermentation (Advate process, Baxter) was conditioned into a buffer suitable for coupling to polyethylene glycol succinimidyl succinate (linear PEG, 5 kDa PEG chain length). PEG was covalently bound by amine coupling preferentially to lysine residues of FVIII at neutral pH. PEG was removed by ion-exchange chromatography and the PEG-FVIII derivative was concentrated by ultra-diafiltration. The conjugates thus obtained retained about 30–40% of the activity of non-modified rFVIII. The specific activity decreased with the amount of PEG linked to the FVIII molecule. In SDS-PAGE and immunoblot studies PEGylated rFVIII showed a band pattern similar to unmodified FVIII with full-length, heavy chain fragments of 180 kDa and 120 kDa and the light chain fragment of 80 kDa. PEGylation also occurred to a high extent in the B domain of FVIII. All bands appeared broadened due to the attachment of polymeric PEG. The maintenance of functionality of FVIII was demonstrated by its potential to be activated and inactivated by thrombin. In the assay PEGylated and unmodified FVIII were incubated with 1 nM thrombin. Sub-samples were drawn at intervals up to 40 minutes and added to a mixture of FIXa, FX, phospholipid vesicles and Ca2+ containing a thrombin inhibitor. After 3 minutes incubation at 37°C the amount of activated FX (FXa) was measured using a FXa-specific chromogenic substrate. Unmodified rFVIII showed a typical picture of an immediate increase in FXa activity and a subsequent decline with no further FXa generation after 15 minutes. PEGylated rFVIII was activated to the same extent as unmodified FVIII but the decay in FXa generation was slower and did not reach the zero level, even 40 minutes after incubation. The formation of the typical thrombin cleavage fragments, with unmodified as well as PEGylated rFVIII, was demonstrated in a Western blot analysis. The slower inactivation by thrombin was also seen there. The pharmacokinetic properties of PEGylated rFVIII compared with rFVIII were investigated in hemophilia A knock-out mice. Both preparations were applied at a dose of 200 IU rFVIII/kg and groups of mice (n=5) were exsanguinated at several time points up to 24 hours. Terminal half-life for PEGylated rFVIII was calculated at 4.9 hours compared with 1.9 hours for unmodified rFVIII in hemophilia A knock-out mice. AUC was approximately doubled. These results indicate that rFVIII can be biochemically modified with PEG whilst at least partly retaining its major functions, but at the same time prolonging its survival in the circulation of hemophilic mice.


Sign in / Sign up

Export Citation Format

Share Document