Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin αvβ3 induces signal transduction and enhances plasminogen activation

2006 ◽  
Vol 95 (03) ◽  
pp. 524-534 ◽  
Author(s):  
Takehiko Tarui ◽  
Nobuaki Akakura ◽  
Mousumi Majumdar ◽  
Nicholas Andronicos ◽  
Junichi Takagi ◽  
...  

SummaryIt has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR,but mediated by unidentified,lower-affinity receptors for the uPA kringle.We found that uPA binds specifically to integrin αvβ3 on CHO cells depleted of uPAR. The binding of uPA to αvβ3 required the uPA kringle domain. The isolated uPA kringle domain binds specifically to purified,recombinant soluble, and cell surface αvβ3, and other integrins (α4β1 and α9β1), and induced migration of CHO cells in an αvβ3-dependent manner. The binding of the uPA kringle to αvβ3 and uPA kringle-induced αvβ3-dependent cell migration were blocked by homologous plasminogen kringles 1-3 or 1-4 (angiostatin),a known integrin antagonist. We studied whether the binding of uPA to integrin αvβ3 through the kringle domain plays a role in plasminogen activation. On CHO cell depleted of uPAR, uPA enhanced plasminogen activation in a kringle and αvβ3-dependent manner.Endothelial cells bound to and migrated on uPA and uPA kringle in an αvβ3-dependent manner. These results suggest that uPA binding to integrins through the kringle domain plays an important role in both plasminogen activation and uPA-induced intracellular signaling. The uPA kringle-integrin interaction may represent a novel therapeutic target for cancer, inflammation, and vascular remodeling.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2236-2236
Author(s):  
Rocco Romagnuolo ◽  
Michael B Boffa ◽  
Marlys L Koschinsky

Abstract Abstract 2236 Lipoprotein(a) [Lp(a)] has been identified as an independent risk factor for cardiovascular diseases such as coronary heart disease. Lp(a) levels vary over 1000-fold within the human population and Lp(a) possesses both proatherogenic and prothrombotic properties due to the LDL-like moiety and apolipoprotein(a) [apo(a)] components, respectively. Apo(a) is highly homologous to plasminogen and thus can potentially interfere with plasminogen activation. Plasmin generated in the context of fibrin mediates the breakdown of blood clots, which are the causative factors in heart attacks and strokes. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. Previous studies have suggested that apo(a) may inhibit pericellular plasminogen activation on the basis of observations that apo(a) decreases plasminogen binding to cells. We have undertaken analysis of the mechanism by which apo(a) may interfere with pericellular plasminogen activation to allow for a more definitive description of the role of Lp(a) within the vasculature. Plasminogen activation was found to be markedly inhibited by the recombinant apo(a) variant 17K, in a dose dependent manner, on human umbilical vein endothelial cells (HUVECs), human monocytic leukemia cells (THP-1), THP-1 macrophages, and smooth muscle cells. The strong lysine binding site in kringle IV type 10, as well as kringle V appear to be required for this effect since apo(a) variants lacking these elements (17KΔAsp and 17KΔV, respectively) failed to inhibit activation. However, the role of lysine-dependent binding of apo(a) itself to the cells is not clear. Carboxypeptidase treatment of cells did not decrease apo(a) binding, and apo(a) does not compete directly for plasminogen binding to the cells. Rather, apo(a) and plasminogen may bind to the cells as a complex. We next attempted to identify the cell-surface receptor(s) that mediate plasminogen activation on the cell surface as well as its inhibition by apo(a). Urokinase-type plasminogen activator receptor (uPAR) has been previously shown to bind to urokinase-type plasminogen activator (uPA), vitronectin, and β3 integrins. uPAR is involved in the remodeling of the extracellular matrix (ECM) through regulation of plasminogen activation. We found evidence that uPAR is a potential receptor for both plasminogen and apo(a). Knockdown of uPAR in HUVECs results in decreased binding of plasminogen, 17K and, to a lesser extent, 17KΔAsp and 17KΔV. Similar experiments in SMCs revealed no changes in binding. A decrease in tPA-mediated plasminogen activation following uPAR knockdown occurred in HUVECs, and addition of 17K did not result in any further decrease. Overexpression of uPAR in THP-1 macrophages leads to greater than a two fold increase in 17K and plasminogen binding. Plasminogen activation increases over two-fold as a result of overexpression of uPAR, while 17K blunts the effect of uPAR overexpression. These results indicate that uPAR plays a crucial role in both plasminogen and apo(a) binding to the cell surface of specific cells and inhibition by apo(a) of plasminogen activation. Macrophage-1-antigen (Mac-1) receptor consists of CD11b (αM) and CD18 (β2) integrin and has been previously shown to recognize uPA and control migration and adhesion. Furthermore, αVβ3 has been previously shown to bind to vitronectin and the uPA-uPAR complex which promotes cell adhesion through binding of both vitronectin and αVβ3 integrins. We found that blocking the αM, β2, or αVβ3 receptors with monoclonal antibodies in THP-1 cells leads to a decrease in plasminogen activation, as well as a blunting of the inhibitory effects of apo(a) on plasminogen activation. These results indicate a role for Mac-1 and αVβ3 in apo(a) binding and inhibition of plasminogen activation. In conclusion, we have demonstrated, for the first time, the role of specific receptors in binding of apo(a) to vascular cell surfaces and in mediating the inhibitory effect of apo(a) on pericellular plasminogen activation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2224-2225 ◽  
Author(s):  
Edward F. Plow ◽  
Elzbieta Pluskota

Lacroix and colleagues provide the first evidence that endothelium-derived microparticles provide an efficient surface for plasminogen activation in a urokinase-type plasminogen activator (uPA)–dependent and uPA receptor (uPAR)–dependent manner, and suggest that generated plasmin may influence angiogenesis.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3579-3586 ◽  
Author(s):  
Catherine Lenich ◽  
Jian-Ning Liu ◽  
Victor Gurewich

Abstract Gene knockout mice studies indicate that urokinase-type plasminogen activator (u-PA) is importantly involved in fibrinolysis, but its physiologic mechanism of action remains poorly understood. We postulated that platelets may be involved in this mechanism, as they carry a novel receptor for u-PA and a portion of the single-chain u-PA (scu-PA) intrinsic to blood is tightly associated with platelets. Therefore, plasminogen activation by platelet-associated u-PA was studied. When washed platelets were incubated with plasminogen, no plasmin was generated as detected by plasmin synthetic substrate (S2403) hydrolysis; however, after the addition of thrombin, but not other agonists, platelet-dependent plasminogen activation occurred. Plasminogen activation was surface-related, being inhibited by blocking platelet fibrinogen receptors or by preventing plasminogen binding to the thrombin-activated platelet surface. U-PA was identified as the only plasminogen activator responsible and enrichment of platelets with exogenous scu-PA significantly augmented plasminogen activation. These findings appeared paradoxical because thrombin inactivates scu-PA. Indeed, zymograms showed inactivation of scu-PA during the first hour of incubation with even the lowest dose of thrombin used (1 u/mL). However, this was followed by a thrombin dose-dependent (1 to 10 u/mL) partial return of u-PA activity. Reactivation of u-PA was not due to the direct action of thrombin, but required platelets and was found to be related to a platelet lysosomal thiol protease, consistent with cathepsin C. In conclusion, a new pathway of plasminogen activation by platelet-associated endogenous or exogenous scu-PA was demonstrated, which is specifically triggered by thrombin activation of platelets. These findings may help explain u-PA–mediated physiological fibrinolysis and have implications for therapeutic thrombolysis with scu-PA.


2001 ◽  
Vol 276 (50) ◽  
pp. 47171-47177 ◽  
Author(s):  
Yoshiaki Adachi ◽  
Sajani S. Lakka ◽  
Nirmala Chandrasekar ◽  
Niranjan Yanamandra ◽  
Christopher S. Gondi ◽  
...  

Interaction between the extracellular matrix and integrin receptors on cell surfaces leads not only to cell adhesion but also to intracellular signaling events that affect cell migration, proliferation, and survival. The vitronectin receptor αvβ3integrin is of key importance in glioma cell biology. The expression of urokinase-type plasminogen activator receptor (uPAR) was recently shown to co-regulate with the expression of αvβ3integrin. Moreover, restoration of the p16 protein in glioma cells inhibits the αvβ3integrin-mediated spreading of those cells on vitronectin. Thus we hypothesized that adenovirus-mediated down-regulation of uPAR and overexpression of p16 might down-regulate the expression of αvβ3integrin and the integrin-mediated signaling in glioma cells, thereby defeating the malignant phenotype. In this study, we used replication-deficient adenovirus vectors that contain either a uPAR antisense expression cassette (Ad-uPAR) or wild-type p16 cDNA (Ad-p16) and a bicistronic adenovirus construct in which both the uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16) are inserted in the E1-deleted region of the vector. Infecting the malignant glioma cell line SNB19 with Ad-uPAR, Ad-p16, or Ad-uPAR/p16 in the presence of vitronectin resulted in decreased αvβ3integrin expression and integrin-mediated biological effects, including adhesion, migration, proliferation, and survival Our results support the therapeutic potential of simultaneously targeting uPAR and p16 in the treatment of gliomas.


1997 ◽  
Vol 77 (03) ◽  
pp. 434-435 ◽  
Author(s):  
B Conne ◽  
M Berczy ◽  
D Belin

SummaryExpressed polymorphisms in the genes encoding components of the fibrinolytic cascade could have implications for the predisposition to thrombolytic disorders and/or for tumor metastasis. The occurrence of published two amino acid sequences at position 194 of the human urokinase-type plasminogen activator prompted us to search by SSCP for frequent polymorphisms in several exons of the gene. Surprisingly, only one sequence was detected in codon 194 (>200 alleles). Two polymorphisms were observed in this study: the most frequent one, a C to T change near the beginning of exon 8, is probably silent; a less frequent polymorphism results in the replacement of a Leu residue by a Pro, in the kringle domain.


Sign in / Sign up

Export Citation Format

Share Document