High urokinase expression contributes to the angiogenic properties of endothelial cells derived from circulating progenitors

2006 ◽  
Vol 95 (04) ◽  
pp. 678-688 ◽  
Author(s):  
Agnès Basire ◽  
Florence Sabatier ◽  
Sophie Ravet ◽  
Edouard Lamy ◽  
Agnès Mialhe ◽  
...  

SummaryEndothelial progenitor cells (EPC) displaya unique ability to repair vascular injury and promote neovascularization although the underlying molecular mechanisms remain poorly understood. Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play a critical role in cell migration and angiogenesis by facilitating proteolysis of extracellular matrix.The aim of the present study was to characterize the uPA/uPAR-dependent proteolytic potential of EPC outgrown from human umbilical cord blood and to analyze its contribution to their angiogenic properties in vitro. Cells derived from EPC (EPDC), presenting typical features of late outgrowth endothelial cells, were compared to mature endothelial cells, represented by human umbilical vein endothelial cells (HUVEC). Using quantitative flow cytometry, enzyme-linked immunosorbent assays and zymography, we demonstrated that EPDC displayed higher levels of uPA and uPAR. In conditioned culture media, uPA-dependant proteolytic activity was also found to be significantly increased in EPDC.This activity was paralleled bya higher secretion of pro-metalloproteinase-2 (pro-MMP-2). Inhibition of EPDC-associated uPA by monoclonal antibodies that block either uPA activity or receptor binding, significantly reduced proliferation, migration and capillary like tube formation. Moreover, tumor necrosis factoralpha and vascular endothelial growth factor,known to be locally secreted in ischemic areas, further increased the proteolytic potential of EPDC by up-regulating uPA and uPAR expression respectively.The EPDC response to these factors was found to be more pronounced than that of HUVEC. In conclusion, these findings indicated that EPDC are characterized by high intrinsic uPA/uPAR-dependent proteolytic potential that could contribute to their invasive and angiogenic behaviour.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qiulian Zhou ◽  
Dongchao Lv ◽  
Qi Sun ◽  
Ping Chen ◽  
Yihua Bei ◽  
...  

Myocardial infarction (MI) is among major causes of morbidity and mortality associated with coronary artery disease. Angiogenesis improves tissue perfusion and cardiac repair after MI. Therefore, angiogenesis is considered to be a novel therapeutic way for ischemic heart diseases. MicroRNAs (miRNAs, miRs) have been reported to play important roles in regulating post-ischemic neovascularization. The current study aims at investigating the role of miR-4261 in angiogenesis. We found that miR-4261 mimics increased, while miR-4261 inhibitors decreased the proliferation of human umbilical vein endothelial cells (HUVEC) using EdU incorporation assay (17.25%±1.31% vs 30.91%±0.92% in nc-mimics vs mir-4261-mimics, 17.91%±1.36% vs 8.51%±0.82% in nc-inhibitor vs mir-4261-inhibitor, respectively) and CCK-8 assays (0.84±0.04 vs 1.38±0.04 in nc-mimics vs mir-4261-mimics, 0.80±0.02 vs 0.72±0.01 in nc-inhibitor vs mir-4261-inhibitor, respectively). The wound healing assay showed that miR-4261 mimic transfection resulted in a significant increase in the migration of HUVEC compared to that of the negative controls while miR-4261 inhibition had the opposite effects. Tube formation assays showed that HUVEC transfected with miR-4261 mimics increased the number of tubes formed (57.25±2.56 vs 81.5±2.53 in nc-mimics vs mir-4261-mimics, respectively), while miR-4261 inhibitor-transfected cells had the opposite effect (56.55±0.45 vs 41.38±0.52 in nc-inhibitor vs mir-4261-inhibitor, respectively). These results indicate that miR-4261 play an important role in regulating angiogenesis. However, it remains unknown which target gene mediated the effects of miR-4261. Thus, it will be of great interest to further investigate the molecular mechanisms of miR-4261 in the proliferation, migration, and tube formation of HUVEC in vitro. MiR-4261 could be a potential therapeutic target to enhance angiogenesis.


Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3575-3582 ◽  
Author(s):  
KJ Hamann ◽  
SP Neeley ◽  
TL Dowling ◽  
JA Grant ◽  
AR Leff

We examined the selective effects of interleukin (IL-5) in regulating the maturational expression of surface adhesion molecules on human eosinophils and adhesion to endothelial cells during eosinophiiopolesis in vitro. Expression of the beta 2 integrins (CD11/CD18) and the beta 1 integrin, VLA-4 (CD49d/ CD29), was assessed during development in culture with IL-3, IL-5, and granulocyte-macrophage colony stimulating factor in cultures of human umbilical cord blood-derived eosinophil (CDE) precursor cells. Expression of both CD11b and CD18 subunits of Mac-1 was lower on CDE which were continuously (= chronically) exposed to IL-5 than on CDE which were cultured without IL-5 for the final week of culture. CD11b expression on cells grown without IL-5 was 71.3 +/- 5.92 (mean specific fluorescence value [MSF] as measured by flow cytometry) versus 52.5 +/- 4.48 MSF for Mac-1 alpha (CD11b) on CDE grown in the continued presence of 2 x 10 – 11 mol/L IL-5 (P < .01). Although expression of VLA-4 decreased as CDE matured, expression of CD29 and CD49d were similar regardless of cytokine exposure for the final week of culture. For eosinophils cultured without IL-5, acute stimulation with 10 – 8 mol/L IL-5 increased CD11b surface expression and increased the number of cells adhering to unstimulated human umbilical vein endothelial cells (HUVEC) from 4,570 +/- 780 cells (9.14 +/- 1.56% adhesion) to 8,385 +/- 515 cells (16.8 +/- 1.03% adhesion) (P < .01). Basal adhesion to unstimulated HUVEC of CDE cultured continuously with IL-5 was comparable (8.62 +/- 1.12% adhesion; P = NS), but neither CD11b expression (50.3 +/- 11.8 MSF; P = NS v control) nor adhesion to HUVEC (6.77 +/- 1.35%; P = NS) was enhanced in these eosinophils after acute stimulation with IL-5. Blockade of adhesion to IL-1-stimulated HUVEC caused by the anti-CD49d monoclonal antibody (MoAb), HP2/1, was comparable for cells cultured with IL-5 and without IL-5. However, the anti-CD18 MoAb, R15.7, caused 47.6 +/- 5.08% inhibition of adhesion of eosinophils cultured without IL-5 and only 25.8 +/- 5.20% for cells cultured continuously with IL-5 (P < .01), and failed to block significantly the adhesion of only the latter cells to IL-4-stimulated HUVEC. Our data show that continuous, chronic exposure to low concentrations of IL-5 causes decreased expression of Mac-1 and refractoriness to acute stimulation with IL-5 of adhesion to HUVEC. These data further demonstrate that CDE maturing in the continued presence of IL-5 adhere to HUVEC predominantly through VLA-4 ligation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Christiane D. Much ◽  
Barbara S. Sendtner ◽  
Konrad Schwefel ◽  
Eric Freund ◽  
Sander Bekeschus ◽  
...  

Cerebral cavernous malformations are slow-flow thrombi-containing vessels induced by two-step inactivation of the CCM1, CCM2 or CCM3 gene within endothelial cells. They predispose to intracerebral bleedings and focal neurological deficits. Our understanding of the cellular and molecular mechanisms that trigger endothelial dysfunction in cavernous malformations is still incomplete. To model both, hereditary and sporadic CCM disease, blood outgrowth endothelial cells (BOECs) with a heterozygous CCM1 germline mutation and immortalized wild-type human umbilical vein endothelial cells were subjected to CRISPR/Cas9-mediated CCM1 gene disruption. CCM1−/− BOECs demonstrated alterations in cell morphology, actin cytoskeleton dynamics, tube formation, and expression of the transcription factors KLF2 and KLF4. Furthermore, high VWF immunoreactivity was observed in CCM1−/− BOECs, in immortalized umbilical vein endothelial cells upon CRISPR/Cas9-induced inactivation of either CCM1, CCM2 or CCM3 as well as in CCM tissue samples of familial cases. Observer-independent high-content imaging revealed a striking reduction of perinuclear Weibel-Palade bodies in unstimulated CCM1−/− BOECs which was observed in CCM1+/− BOECs only after stimulation with PMA or histamine. Our results demonstrate that CRISPR/Cas9 genome editing is a powerful tool to model different aspects of CCM disease in vitro and that CCM1 inactivation induces high-level expression of VWF and redistribution of Weibel-Palade bodies within endothelial cells.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2363-2369 ◽  
Author(s):  
Ta-Kashi Ito ◽  
Genichiro Ishii ◽  
Seiji Saito ◽  
Keiichi Yano ◽  
Ayuko Hoshino ◽  
...  

AbstractVascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF165 isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.


2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


2020 ◽  
Author(s):  
Hongbing Jiang ◽  
Yameng Si ◽  
Jiadong Huang ◽  
Xiang Li ◽  
Yu Fu ◽  
...  

Abstract Background: Venous malformations (VMs), most of which associated with activating mutations in the endothelial cells (ECs) tyrosine kinase receptor TIE2, are characterized by dilated and immature veins with scarce smooth muscle cells (SMCs) coverage. However, the underlying mechanism of interaction between ECs and SMCs responsible for VMs has not been fully understood. Methods : Here, we screened 5 patients with TIE2-L914F mutation who were diagnosed with VMs by SNP sequencing, and we compared the expression of platelet-derived growth factor beta (PDGFB) and α-SMA in TIE2 mutant veins and normal veins by immunohistochemistry. In vitro, we generated TIE2-L914F-expressing human umbilical vein endothelial cells (HUVECs) and performed BrdU, CCK-8, transwell and tube formation experiments on none-transfected and transfected ECs. Then we investigated the effects of rapamycin (RAPA) on cellular characteristics. Next we established a co-culture system and investigated the role of AKT/FOXO1/PDGFB in regulating cross-talking of mutant ECs and SMCs. Results: VMs with TIE2-L914F mutation showed lower expression of PDGFB and α-SMA than normal veins. TIE2 mutant ECs revealed enhanced cell viability and motility, and decreased tube formation, whereas these phenotypes could be reversed by rapamycin. Mechanistically, RAPA ameliorated the physiological function of mutant ECs by inhibiting AKT-mTOR pathway, but also facilitated the nuclear location of FOXO1 and the expression of PDGFB in mutant ECs, and then improved paracrine interactions between ECs and SMCs. Moreover, TIE2 mutant ECs strongly accelerated the transition of SMCs from contractile phenotype to synthetic phenotype, whereas RAPA could prevent the phenotype transition of SMCs. Conclusions: Our data demonstrate a previously unknown mechanistic linkage of AKT-mTOR/FOXO1 pathway between mutant ECs and SMCs in modulating venous dysmorphogenesis, and AKT/FOXO1 axis might be a potential therapeutic target for the recovery of TIE2-mutation causing VMs.


2016 ◽  
Vol 38 (2) ◽  
pp. 502-513 ◽  
Author(s):  
Fei Shi ◽  
Tian-Zhi Zhao ◽  
Yong-Chun Wang ◽  
Xin-Sheng Cao ◽  
Chang-Bin Yang ◽  
...  

Background/Aims: The potential role of caveolin-1 in modulating angiogenesis in microgravity environment is unexplored. Methods: Using simulated microgravity by clinostat, we measured the expressions and interactions of caveolin-1 and eNOS in human umbilical vein endothelial cells. Results: We found that decreased caveolin-1 expression is associated with increased expression and phosphorylation levels of eNOS in endothelial cells stimulated by microgravity, which causes a dissociation of eNOS from caveolin-1 complexes. As a result, microgravity induces cell migration and tube formation in endothelial cell in vitro that depends on the regulations of caveolin-1. Conclusion: Our study provides insight for the important endothelial functions in altered gravitational environments.


Sign in / Sign up

Export Citation Format

Share Document