Anti-angiogenesis mediated by angiostatin K1–3, K1–4 and K1–4.5

2006 ◽  
Vol 95 (04) ◽  
pp. 668-677 ◽  
Author(s):  
Ya-Huey Chen ◽  
Hua-Lin Wu ◽  
Ching Li ◽  
Yi-Hsien Huang ◽  
Chi-Wu Chiang ◽  
...  

SummaryThe molecular mechanism mediated by multiple forms of angiostatin via acting on proliferating vascular endothelium remains elusive. To address whether three forms of angiostatin, K1-3, K1-4 or K1-4.5, utilized similar or distinct pathways to mediate anti-angiogenesis, we adopted an adenoviral expression system to express secretable angiostatin molecules for CM collection. The anti-angiogenic activity of K1-3, K1-4 or K1-4.5 was confirmed by using proliferation, migration, tube formation and apoptotic assays of human endothelial cells. These angiostatin molecules at comparable expression level inhibited various in vitro angiogenesis assays with some variations. Furthermore, K1-3, K1-4 or K1-4.5 increased the expression of p53 protein and its downstream effectors, enhanced FasL-mediated signaling pathways, and decreased activation of AKT. At least three different receptors, Fas, integrin αvβ3 and ATP synthase, were involved in the anti-angiogenic action of angiostatin molecules. Besides, the expression of 189 genes at mRNA level was significantly altered by K1-3, K1-4 or K1-4.5. More than 70% of these genes participate in growth, inflammation, apoptosis, migration and extracellular matrix. Taken together, K1-3, K1-4 and K1-4.5, regardless of the number of kringles in the angiostatin molecules, mediated anti-angiogenesis via mostly similar pathways. We are the first to demonstrate the involvement of DAPK1 in the mediation of anti-angiogenesis by angiostatin.

Steroids ◽  
2012 ◽  
Vol 77 (13) ◽  
pp. 1502-1509 ◽  
Author(s):  
Lucie Rárová ◽  
Stefan Zahler ◽  
Johanna Liebl ◽  
Vladimír Kryštof ◽  
David Sedlák ◽  
...  

2005 ◽  
Vol 22 (1) ◽  
pp. 57-69 ◽  
Author(s):  
C. N. Hahn ◽  
Z. J. Su ◽  
C. J. Drogemuller ◽  
A. Tsykin ◽  
S. R. Waterman ◽  
...  

Angiogenesis is a complex multicellular process requiring the orchestration of many events including migration, alignment, proliferation, lumen formation, remodeling, and maturation. Such complexity indicates that not only individual genes but also entire signaling pathways will be crucial in angiogenesis. To define an angiogenic blueprint of regulated genes, we utilized our well-characterized three-dimensional collagen gel model of in vitro angiogenesis, in which the majority of cells synchronously progress through defined morphological stages culminating in the formation of capillary tubes. We developed a comprehensive three-tiered approach using microarray analysis, which allowed us to identify genes known to be involved in angiogenesis and genes hitherto unlinked to angiogenesis as well as novel genes and has proven especially useful for genes where the magnitude of change is small. Of interest is the ability to recognize complete signaling pathways that are regulated and genes clustering into ontological groups implicating the functional importance of particular processes. We have shown that consecutive members of the mitogen-activated protein kinase and leukemia inhibitory factor signaling pathways are altered at the mRNA level during in vitro angiogenesis. Thus, at least for the mitogen-activated protein kinase pathway, mRNA changes as well as the phosphorylation changes of these gene products may be important in the control of blood vessel morphogenesis. Furthermore, in this study, we demonstrated the power of virtual Northern blot analysis, as an alternative to quantitative RT-PCR, for measuring the magnitudes of differential gene expression.


2006 ◽  
Vol 175 (6) ◽  
pp. 981-991 ◽  
Author(s):  
Alexander H. Licht ◽  
Oliver T. Pein ◽  
Lore Florin ◽  
Bettina Hartenstein ◽  
Hendrik Reuter ◽  
...  

The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis.


2016 ◽  
Vol 311 (1) ◽  
pp. H299-H309 ◽  
Author(s):  
Zhichao Zhou ◽  
Ihsan Chrifi ◽  
Yanjuan Xu ◽  
John Pernow ◽  
Dirk J. Duncker ◽  
...  

Uridine adenosine tetraphosphate (Up4A), a dinucleotide, exerts vascular influence via purinergic receptors (PR). We investigated the effects of Up4A on angiogenesis and the putative PR involved. Tubule formation assay was performed in a three-dimensional system, in which human endothelial cells were cocultured with pericytes with various Up4A concentrations for 5 days. Expression of PR subtypes and angiogenic factors was assessed in human endothelial cells with and without P2Y6R antagonist. No difference in initial tubule formation was detected between Up4A stimulation and control conditions at day 2. In contrast, a significant increase in vascular density in response to Up4A was observed at day 5. Up4A at an optimal concentration of 5 μM promoted total tubule length, number of tubules, and number of junctions, all of which were inhibited by the P2Y6R antagonist MRS2578. Higher concentrations of Up4A (10 μM) had no effects on angiogenesis parameters. Up4A increased mRNA level of P2YRs (P2Y2R, P2Y4R, and P2Y6R) but not P2XR (P2X4R and P2X7R) or P1R (A2AR and A2BR), while Up4A upregulated VEGFA and ANGPT1, but not VEGFR2, ANGPT2, Tie1, and Tie2. In addition, Up4A increased VEGFA protein levels. Transcriptional upregulation of P2YRs by Up4A was inhibited by MRS2578. In conclusion, Up4A is functionally capable of promoting tubule formation in an in vitro coculture system, which is likely mediated by pyrimidine-favored P2YRs but not P2XRs or P1Rs, and involves upregulation of angiogenic factors.


2015 ◽  
Vol 7 (2) ◽  
pp. 148
Author(s):  
Ester Garcia-Valiente ◽  
Elsa Vanhecke ◽  
Laurent Muller ◽  
Bruno Peault ◽  
Germain Stéphane

2013 ◽  
Vol 25 (05) ◽  
pp. 1340007
Author(s):  
Elsa C. Chan ◽  
Ming-Hong Tai ◽  
Pei-Chang Wu ◽  
Hsiao-Mei Kuo ◽  
Fan Jiang ◽  
...  

Boosting angiogenesis is a crucial process to enhance tissue growth in tissue engineering (TE). Hepatoma-derived growth factor (HDGF) has been identified as an angiogenic factor, but its involvement in angiogenesis in an arteriovenous loop-based TE chamber developed by the laboratory is unclear. In this study, the authors first examined the effects of HDGF on angiogenic responses in endothelial cells and in a corneal model of neovascularization, and then characterized the expression of HDGF in the TE chamber. HDGF (1–500 ng/mL) induced concentration-dependent angiogenic responses in human endothelial cells in vitro (proliferation, migration, and tube formation). Local application of HDGF stimulated neovascularization in a rat model of corneal angiogenesis. In the TE chamber, there was an increase in blood vessel volume from day 3 to day 14. Immunofluorescence microscopy revealed that HDGF is highly expressed in the neovessels in the chamber. Peak expression of HDGF (day 3) coincided with the infiltration of inflammatory cells, and the mRNA level of endogenous HDGF correlated with that of tumor necrosis factor α (TNFα). In vitro, TNFα stimulated HDGF expression in endothelial cells. The data suggest that HDGF may be involved in angiogenic responses in the TE chamber and the proinflammatory cytokine TNFα may have a pivotal role in stimulating HDGF expression. Enhancing HDGF signaling may be a new approach to extend vascularization for TE.


2006 ◽  
Vol 74 (9) ◽  
pp. 5185-5190 ◽  
Author(s):  
Amy M. McCord ◽  
Sandra I. Resto-Ruiz ◽  
Burt E. Anderson

ABSTRACT The gram-negative bacterium Bartonella henselae is capable of causing angiogenic lesions as a result of infection. Previously, it has been shown that B. henselae infection can result in production of the chemokine interleukin-8 (IL-8). In this study, we demonstrated that monocytes, endothelial cells, and hepatocytes produce IL-8 in response to B. henselae infection. We also investigated the role of IL-8 in B. henselae-induced endothelial cell proliferation and capillary tube formation. Both in vitro angiogenesis assays were IL-8 dependent. B. henselae-mediated inhibition of apoptosis, as indicated by gene expression of Bax and Bcl-2, was also shown to be IL-8 dependent in endothelial cells. Furthermore, infection of endothelial cells with B. henselae stimulated upregulation of the IL-8 chemokine receptor CXCR2. Infection of human endothelial cells by B. henselae resulting in IL-8 production likely plays a central role in the ability of this organism to cause angiogenesis during infection.


Sign in / Sign up

Export Citation Format

Share Document