Enhanced platelet aggregation and activation under conditions of hypothermia

2007 ◽  
Vol 98 (12) ◽  
pp. 1266-1275 ◽  
Author(s):  
Ruben Xavier ◽  
Ann White ◽  
Susan Fox ◽  
Robert Wilcox ◽  
Stan Heptinstall

SummaryThe effects on platelet function of temperatures attained during hypothermia used in cardiac surgery are controversial. Here we have performed studies on platelet aggregation in whole blood and platelet-rich plasma after stimulation with a range of concentrations of ADP, TRAP, U46619 and PAF at both 28°C and 37°C. Spontaneous aggregation was also measured after addition of saline alone. In citrated blood, spontaneous aggregation was markedly enhanced at 28°C compared with 37°C. Aggregation induced by ADP was also enhanced. Similar results were obtained in hirudinised blood. There was no spontaneous aggregation in PRP but ADP-induced aggregation was enhanced at 28°C. The P2Y12 antagonist AR-C69931 inhibited all spontaneous aggregation at 28°C and reduced all ADP-induced aggregation responses to small, reversible responses. Aspirin had no effect. Aggregation was also enhanced at 28°C compared with 37°C with low but not high concentrations of TRAP and U46619. PAF-induced aggregation was maximal at all concentrations when measured at 28°C, but reversal of aggregation was seen at 37°C. Baseline levels of platelet CD62P and CD63 were significantly enhanced at 28°C compared with 37°C. Expression was significantly increased at 28°C after stimulation with ADP, PAF and TRAP but not after stimulation with U46619. Overall, our results demonstrate an enhancement of platelet function at 28°C compared with 37°C, particularly in the presence of ADP.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4018-4018
Author(s):  
Anna M. Dyszkiewicz-Korpanty ◽  
Anne Kim ◽  
James D. Burner ◽  
Eugene P. Frenkel ◽  
Ravindra Sarode

Abstract The reported incidence of aspirin (ASA) resistance ranges from 5 to 30%. Various platelet function assays have been employed to detect aspirin resistance in patients with cardio- and cerebrovascular disease. Such a high proposed incidence of ASA resistance poses a critical need for a rapid point-of -care (POC) platelet function test. Unfortunately, no uniformly accepted definition of ASA resistance exists. Platelet aggregation studies that have been used to define ASA resistance are time consuming and require special technical expertise. The Ultegra Rapid Platelet Function -ASA (RPFA-ASA) has been developed as a POC test that is performed without sample processing. This optical method measures agglutination of fibrinogen-coated beads upon platelet activation with arachidonic acid. In the presence of aspirin effect, however, the agglutination of the beads is inhibited. The described cutoff of ≥ 550 Aspirin Reaction Units (ARU) is termed non-responsiveness to ASA based on a preclinical study and subsequent correlation with epinephrine-induced platelet aggregation in platelet rich plasma. Since RPFA-ASA uses whole blood, we validated its performance characteristics against a classic whole blood platelet aggregation assay (WBA). We studied 50 healthy volunteers, aged 25–75 (24 men, 26 women) with normal CBC, who had not ingested anti-platelet drugs for 14 days prior to the study. Baseline studies included WBA (dual channel aggregometer, Chrono-log Inc., Havertown, PA) using both arachidonic acid (AA -0.5; 0.25 mM) and collagen (1; 2 μg/mL) as well as an RPFA-ASA assay (Accumetrics Inc., San Diego, CA). These studies were repeated after 3 days of ASA (325 mg/d) intake. Based on a review of the literature, we defined an adequate ASA response as a completely inhibited AA-induced platelet aggregation and at least 30% inhibition of collagen-induced aggregation (both concentrations of the agonist). Thus, those with < 30% inhibition of aggregation response to collagen were considered ASA resistant. Eleven subjects were ASA resistant by WBA (20%; 8 females and 3 males (aged 25–63). In contrast, since all 50 subjects achieved ARU values of < 550 ARU, none were recognized as an ASA non-responder by the RPFA-ASA. While the current cutoff of < 550 ARU posed by the Ultegra RPFA-ASA does identify those who have taken ASA, the assay is unable to recognize ASA non-responders. Thus, based on these data, the appropriate cutoff for the recognition of ASA resistance by the RPFA-ASA should be re-adjusted to a significantly lower level to ensure appropriate assay results.


1980 ◽  
Vol 44 (03) ◽  
pp. 143-145 ◽  
Author(s):  
J Dalsgaard-Nielsen ◽  
J Gormsen

SummaryHuman platelets in platelet rich plasma (PRP) incubated at 37° C with 0.3–2% halothane for 5–10 min lost the ability to aggregate with ADP, epinephrine and collagen.At the same time uptake and release of 14C-serotonin was inhibited. When halothane supply was removed, platelet functions rapidly returned to normal. However, after high concentrations of halothane, the inhibition of platelet aggregation was irreversible or only partially reversible.The results suggest that halothane anaesthesia produces a transient impairment of platelet function.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


2008 ◽  
Vol 99 (01) ◽  
pp. 121-126 ◽  
Author(s):  
Siegmund Braun ◽  
Stefan Jawansky ◽  
Wolfgang Vogt ◽  
Julinda Mehilli ◽  
Albert Schömig ◽  
...  

SummaryThe level of platelet aggregation, measured with light transmission aggregometry (LTA) in platelet rich plasma (PRP), has been shown to predict outcomes after percutaneous coronary intervention (PCI). However, measuring parameters of platelet function with LTA is time consuming and weakly standardized. Thus, a fast and standardized method to assess platelet function after clopidogrel treatment would be of great value for clinical practice. A new method, multiple electrode platelet aggregometry (MEA), to rapidly measure platelet aggregation in whole blood has recently been developed. The aim of this study was to assess parameters of platelet function with MEA and LTA before and after administration of 600 mg clopidogrel. Blood samples from 149 patients scheduled for coronary angiography were taken after clopidogrel treatment; in addition, in 60 of the patients samples were available before clopidogrel treatment. ADP-induced platelet aggregation was measured with LTA and simultaneously in whole blood with MEA on the Multiplate analyzer. Platelet aggregation measured with MEA decreased significantly after clopidogrel treatment (P<0.0001). ADP-induced platelet aggregation assessed with MEA and LTA correlated significantly (Spearman rank correlation coefficient=0.71; P<0.0001).The results of MEA, a fast and standardized method to assess the platelet response to ADP prior to and after clopidogrel treatment, correlate well with LTA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3892-3892
Author(s):  
Shogo Kasuda ◽  
Yoshihiko Sakurai ◽  
Midori Shima ◽  
Masahiro Takeyama ◽  
Katsuhiko Hatake ◽  
...  

Abstract Background: Moderate consumption of alcohol beverages reduces the morbidity from coronary heart disease. Previous studies describing of inhibitory activity of ethanol (EtOH) on platelet function have substantiated this observation. However, the effects of EtOH on thrombin-related platelet activation remains to be fully elucidated, though platelet activation by thrombin is essential for normal hemostasis as well as relevant to pathophysiological conditions of thrombosis. Objectives: The aim of this study is to elucidate the effect of EtOH on α-thrombin-related platelet function by measuring platelet aggregation and intracellular calcium ([Ca2+]i). Materials and Methods: A dual-wavelength spectrofluorometer was used for measurement. α-thrombin, PAR1-activating peptide (AP) (10 μM) or PAR4-AP (25 μM) was added to fura2-AM loaded washed platelet preincubated with or without EtOH (40, 80, 160 and 320 mM). Results and Interpretations: First, the effects of EtOH on 0.5 nM of thrombin-induced platelet activation was assessed. The concentration 0.5 nM used is conceived to activate platelets only via PAR-1. EtOH did not affect platelet aggregation. EtOH inhibited rise of [Ca2+]i dose-dependently. [Ca2+]i peak time at which maximal rise of [Ca2+]i delayed in a dose-dependent manner. Secondly, 10 nM of thrombin was used as an agonist. Stimulation by high concentrations of thrombin (〉 5nM) results in cleavage of both PAR1 and PAR4. The changes in [Ca2+]i showed double-phase curve composed of transient spike and prolonged peak in the absence of EtOH. Although EtOH inhibited neither platelet aggregation nor the first phase of [Ca2+]i increasing, it reduced the second prolonged elevation of [Ca2+]i dose-dependently. To elucidate the inhibiting mechanism of EtOH more precisely, the effects of EtOH on PAR1-AP-induced platelet function were examined. Rise of [Ca2+]i gave a spike form and was almost unchanged even in the presence of high concentrations of EtOH, whereas platelet aggregation was reduced and dissociated in the presence of EtOH. Lastly, the effects of EtOH on PAR4-AP-induced platelet function was examined. Aggregation of PRP was quenched by high concentrations of EtOH but dissociation was not observed contrary to that observed in PAR1-AP-induced aggregation. Further, EtOH inhibited [Ca2+]i rise and delayed [Ca2+]i peak time dose-dependently. Our results provided a possible mechanism by which EtOH inhibits platelet activation. Reduction of the prolonged elevation of [Ca2+]i by high concentrations of thrombin suggested that EtOH inhibits PAR4 signaling not PAR1 since the second prolonged phase of [Ca2+]i is mediated by PAR4. Inhibition of PAR4-induced aggregation and [Ca2+]i elevation by EtOH supported the findings and EtOH might reduce Ca2+ influx through inhibition of PAR4. Furethermore, the difference between the platelet activation mechanisms of low concentrations of thrombin and PAR1-AP was suggested. PAR1-AP can aggregate platelets at least but might fail to activate phospholipase A2 required for sustaining stable aggregation since EtOH abolishes phospholipase A2 and thereby reduces thromboxane A2 generation. On the other, thrombin at low concentrations might have another pathway for activating platelet differently than PAR1-AP. Further characterization of the mechanisms involved in inhibition of platelet activation by EtOH may help develop new strategies to control thrombin-mediated platelet activation.


1995 ◽  
Vol 88 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Valentine C. Menys ◽  
Philip R. Belcher ◽  
Mark I. M. Noble ◽  
George E. Drossos ◽  
Ravi Pillai ◽  
...  

1. We tested the effect of intravenous adrenaline at 0.55–1.10 nmol min−1 kg−1 (for 3–8 min, at 7–10 min post bypass; n = 7) on both microaggregation in hirudinized whole blood, using platelet counting, and macroaggregation in platelet-rich plasma, using optical aggregometry. Control (n = 12) blood samples were taken before and at 10 and 20 min after bypass. 2. Post-bypass plasma adrenaline levels (nmol/l) increased slightly in controls (1.0 versus 0.7 at 10 min, medians; P = 0.05) and markedly with adrenaline infusion (36 versus 0.5 before infusion, P = 0.02). Microaggregation (percentage decrease in single platelets) in stirred blood, reflecting largely ADP-dependent ‘spontaneous’ aggregation, was not influenced by adrenaline infusion. In contrast, collagen (0.2 μg/ml)-induced microaggregation in blood was enhanced by adrenaline (92% versus 41%, P = 0.02), with no change in controls (60% versus 53%, P = 0.61). 3. In controls, collagen (0.6 μg/ml)-induced macroaggregation in platelet-rich plasma (extent of increase in light transmission, cm) was impaired at 10 min post bypass (5.3 versus 12.1 before bypass, P = 0.01), but was enhanced by adrenaline (7.0 versus 3.6 before infusion, P = 0.02). Platelet counts (×109/1) were decreased postbypass (155 versus 220, P = 0.02) and were not influenced by adrenaline infusion (167, P = 0.93). 4. In conclusion, following bypass and at normocalcaemia, adrenaline enhances collagen-induced aggregation in both plasma and whole blood ex vivo, independently of any change in platelet counts, but has no effect on stirring-induced ‘spontaneous’ aggregation in blood.


1987 ◽  
Author(s):  
D A F Chamone ◽  
M Ivany-Silva ◽  
C Cassaro ◽  
G Bellotti ◽  
C Massumoto ◽  
...  

Guarana, a methylxanthine obtained from the seeds of Paullinia cupana has been largely used in the Amazon region by native indians during centuries as stimulant. We evaluated the effect of guarana on ex-vivo and in vitro platelet aggregation induced by adenosine-5-diphosphate (ADP) in human and rat whole blood with an impedance (Chrono-Log, model 500) and in their platelet rich plasma (PRP) with an optical aggregometer (Chrono-Log, model 440). Ex-vivo studies were carried out after single oral intake of guarana. Seven healthy volunteers (5 male and 2 female) aged 19-26 years who had taken no drugs for 10 days before, ingested 8gm of crude powder of guarana. Blood samples were drawn before and 1 hour after guarana intake. We observed a significative inhibition of platelet aggregation in whole blood meanwhile PRP was un changed as compared to basal values. In vitro studies were performed in whole blood and PRP from human volunteers and male Wis-tar rats. The combined effect of guarana and adenosine was also studied. A control aggregation was always run with saline. The results demonstrated an inhibition statistically significative (p < 0.001) of platelet aggregation in whole blood. Differently from whole blood the PRP with the same concentration of guarana did not result in inhibition of ADP induced aggregation when eva luated with the impedance method. The blood incubation with adenosine and guarana resulted in synergistic inhibitory effect that was much more strinking in whole blood than in PRP. Guarana fails to inhibit aggregation of rat platelets.Our results demonstrate that guarana prevents platelet aggregation in whole blood which depends on red blood cells, probably involving adenosine.


1989 ◽  
Vol 17 (6) ◽  
pp. 514-520 ◽  
Author(s):  
C. Cimminiello ◽  
M. Milani ◽  
T. Uberti ◽  
G. Arpaia ◽  
G. Bonfardeci

As Ca2+ is known to play a fundamental role in platelet function, the effect of combining two platelet aggregating agents (adrenaline and the ionophore A23187) with different effects on Ca2+ was studied at levels subthreshold for aggregation using platelet-rich plasma from eight atherosclerotic patients. Adrenaline lowered the A23187 threshold required to induce aggregation. The effects of treating patients with the antiplatelet agents, indobufen and ticlopidine, on A23187 and adrenaline induced aggregation of platelets prepared in hirudin or sodium citrate was also evaluated. Aggregation was also studied using platelets resuspended in Ca2+-free and Ca2+-enriched Tyrode solution. Before treatment hirudin treated platelet-rich plasma, which has physiological extraplatelet Ca2+ levels, was more sensitive to A23187 and adrenaline than was citrated platelet-rich plasma, which has suppressed Ca2+ levels. Ticlopidine significantly raised the concentration of A23187 required to induce aggregation in citrated but not hirudin treated platelet-rich plasma. Indobufen did not significantly affect A23187 induced aggregation. Ticlopidine acts by inhibiting the glycoprotein IIb – IIIa complex on the platelet membranes. Low levels of extracellular Ca2+ and ticlopidine may act synergistically to reduce the aggregatory response of stimulated platelets.


Perfusion ◽  
2000 ◽  
Vol 15 (6) ◽  
pp. 507-513 ◽  
Author(s):  
Tetsuya Miyashita ◽  
Takahiko Kamibayashi ◽  
Yoshihiko Ohnishi ◽  
Junjiro Kobayashi ◽  
Masakazu Kuro

Haemostatic disorder is one of the most common complications following cardiac surgery with cardiopulmonary bypass (CPB). Tranexamic acid reduces blood loss and allogeneic blood transfusion requirement in cardiac surgery. It had been thought that tranexamic acid inhibited fibrinolysis alone following CPB. In the present study, the haemostatic effects of tranexamic acid (20 mg/kg body weight bolus after induction of anaesthesia followed by continuous infusion at 2 mg/kg/h), including fibrinolysis and platelet function, were investigated in 22 patients (tranexamic acid group n = 12; control group n = 10) undergoing primary cardiac valve surgery. Fibrinolysis following CPB was reduced significantly in the tranexamic acid group. Following protamine administration, the reduction of collagen-induced whole blood platelet aggregation was mitigated significantly in the tranexamic acid group compared with the control group (36% reduction in the tranexamic acid group vs 58% in the control group; p = 0.011), although platelet counts did not differ between the two groups. In conclusion, tranexamic acid not only inhibits fibrinolysis directly, but also may preserve platelet function following CPB.


Sign in / Sign up

Export Citation Format

Share Document