scholarly journals Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: Insights from experimental models

2010 ◽  
Vol 104 (07) ◽  
pp. 30-38 ◽  
Author(s):  
Chi-Wing Kong ◽  
Fadi Akar ◽  
Ronald Li

SummaryHeart diseases have been a major cause of death worldwide, including developed countries. Indeed, loss of non-regenerative, terminally differentiated cardiomyocytes (CMs) due to aging or diseases is irreversible. Current therapeutic regimes are palliative in nature, and in the case of end-stage heart failure, transplantation remains the last resort. However, this option is significantly hampered by a severe shortage of donor cells and organs. Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency to differentiate into all cell types. More recently, direct reprogramming of adult somatic cells to become pluripotent hES-like cells (a.k.a. induced pluripotent stem cells or iPSCs) has been achieved. The availability of hESCs and iPSCs, and their successful differentiation into genuine human heart cells have enabled researchers to gain novel insights into the early development of the human heart as well as to pursue the revolutionary paradigm of heart regeneration. Here we review our current knowledge of hESC-/iPSC-derived CMs in the context of two fundamental operating principles of CMs (i.e. electrophysiology and Ca2+-handling), the resultant limitations and potential solutions in relation to their translation into clinical (bioartificial pacemaker, myocardial repair) and other applications (e.g. as models for human heart disease and cardiotoxicity screening).

Author(s):  
Xue Jiang ◽  
Yihuan Chen ◽  
Xiaofeng Liu ◽  
Lingqun Ye ◽  
Miao Yu ◽  
...  

In the past decades, researchers discovered the contribution of genetic defects to the pathogenesis of primary cardiomyopathy and tried to explain the pathogenesis of these diseases by establishing a variety of disease models. Although human heart tissues and primary cardiomyocytes have advantages in modeling human heart diseases, they are difficult to obtain and culture in vitro. Defects developed in genetically modified animal models are notably different from human diseases at the molecular level. The advent of human induced pluripotent stem cells (hiPSCs) provides an unprecedented opportunity to further investigate the pathogenic mechanisms of inherited cardiomyopathies in vitro using patient-specific hiPSC-derived cardiomyocytes. In this review, we will make a summary of recent advances in in vitro inherited cardiomyopathy modeling using hiPSCs.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Wuqiang Zhu ◽  
Meng Zhao ◽  
Saidulu Mattapally ◽  
Ling Gao ◽  
Jianyi Zhang

Transplantation of cardiomyocytes derived from induced pluripotent stem cells (iPSCs) improves cardiac function in animal models with myocardial infarction. However, the poor number of survived cells and the low proliferation capability of cardiomyocyte derived from iPSCs are bottlenecks in myocardial repair with cell therapy. We hypothesize that increasing the number of surviving iPSC-CMs in the engraftment via cell cycle induction may lead to a transmural replacement of scar tissue and a lasting restoration of cardiac function. Cyclin D2 is a protein that regulates cell cycle transition from G1 to S phase. We transfected MHC-cyclin D2 (designated as MHC-cycD2) cDNA into the iPSCs, and differentiated the iPSCs into cardiomyocytes. Comparing to non-expressing cells, MHC-cycD2-expressing cardiomyocytes displayed increased Brdu incorporation activity, suggesting the enhanced cell cycle in MHC-cycD2-expressing cardiomyocytes. Cell cycle activity was confirmed by increased number of Ki-67 and PCNA positive immunostaining cardiomyocytes and more contractile embryonic body cell mass in MHC-cycD2-expressing culture compared to non-expressing culture. Data from Q-PCR and histology suggested that expression of MHC-cycD2 didn’t alter the pluripotency or cardiomyogenic potential of iPSCs. Thus, we have successfully induced cell cycle in iPSC-derived cardiomyocytes via expression of cyclin D2. We are currently studying if MHC-cycD2-expressing iPSC-cardiomyocytes exhibit superior regenerative potential compared to their non-expressing counterparts following transplantation into chronically infarcted hearts.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jun Liu ◽  
Claire A. Higgins ◽  
Jenna C. Whitehouse ◽  
Susan J. Harris ◽  
Heather Crawford ◽  
...  

In the hair follicle, the dermal papilla (DP) and dermal sheath (DS) support and maintain proliferation and differentiation of the epithelial stem cells that produce the hair fibre. In view of their regulatory properties, in this study, we investigated the interaction between hair follicle dermal cells (DP and DS) and embryonic stem cells (ESCs); induced pluripotent stem cells (iPSCs); and haematopoietic stem cells. We found that coculture of follicular dermal cells with ESCs or iPSCs supported their prolonged maintenance in an apparently undifferentiated state as established by differentiation assays, immunocytochemistry, and RT-PCR for markers of undifferentiated ESCs. We further showed that cytokines that are involved in ESC support are also expressed by cultured follicle dermal cells, providing a possible explanation for maintenance of ES cell stemness in cocultures. The same cytokines were expressed within folliclesin situin a pattern more consistent with a role in follicle growth activities than stem cell maintenance. Finally, we show that cultured mouse follicle dermal cells provide good stromal support for haematopoiesis in an established coculture model. Human follicular dermal cells represent an accessible and readily propagated source of feeder cells for pluripotent and haematopoietic cells and have potential for use in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document