scholarly journals Diversity of planktonic Ostracods (Crustacea: Ostracoda) in the mixed layer of northeastern Arabian Sea during the summer monsoon

2015 ◽  
Vol 7 (3) ◽  
pp. 6980-6986 ◽  
Author(s):  
Jasmine Purushothaman
MAUSAM ◽  
2021 ◽  
Vol 47 (4) ◽  
pp. 355-368
Author(s):  
R.R. RAO ◽  
K. V. SANIL KUMAR ◽  
BASIL MATHEW

The observed short term variability in the current field of the upper layers at selected locations in the Arabian Sea is examined utilising the available short (1-2 weeks) time series of moored currentmeter records obtained from former USSR stationary ship polygons during MONSOON-77 and MONEX-79 field experiments. Supplementary time series data sets on surface wind, sub-surface temperature and salinity were also made use of to explain the observed structure and variability of current field, in the upper 2OOm water column. The thermal regime in the central Arabian Sea showed cooling and deepening of the surface mixed layer with the onset and progress of the summer monsoon during MONSOON- 77 while the corresponding variability was marginal in the western and south-central Arabian Sea during pre-onset regime of MONEX-79, The Ekman balance appeared to be limited to the mixed layer, only during pre-onset regime of MONSOON-77 and was absent during pre-onset and onset regimes of MONEX-79 suggesting the importance of internal ocean dynamics influencing the current field. Most of the current records showed rich structure with superposed oscillations extending over the entire 200m water column. During progress regime of MONSOON-77 and at the equatorial station during pre-onset regime of MONEX-79. dramatic reduction in the current strength is noticed from mixed layer to thermocline due to differences in the eddy viscosity. During MONEX-79, a strong subsurface core of southerly flow ( -100 cm/s) was noticed at the equator (49°E) even before the onset of monsoon. The vector time series of current-meter records subjected to rotary spectral analysis showed inertial oscillations in the flow regime more prominently during MONSOON-77 as compared to MONEX-79. R.R. RAO. K. V. SANIL [email protected] and BASIL [email protected]


2021 ◽  
Vol 166 ◽  
pp. 105278
Author(s):  
K.U. Abdul Jaleel ◽  
Usha V. Parameswaran ◽  
Aiswarya Gopal ◽  
Chippy Khader ◽  
V.N. Sanjeevan ◽  
...  

Tellus ◽  
1974 ◽  
Vol 26 (4) ◽  
pp. 464-476 ◽  
Author(s):  
Kshudiram Saha
Keyword(s):  

2021 ◽  
Author(s):  
Sergey Piontkovski ◽  
Khalid Al Hashmi ◽  
Yuliya Zagorodnaya ◽  
Irina Serikova ◽  
Vladislav Evstigneev ◽  
...  

<p>Seasonal variability is a powerful component of the spatio-temporal dynamics of plankton communities, especially in the regions with oxygen-depleted waters. The Arabian Sea and the Black Sea are typical representatives of these regions. In both, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921, is one of the abundant plankton species which forms algal blooms. Sampling on coastal stations in the upper mixed layer by the plankton nets with the 120-140 µm mesh size was carried out in 2004-2010. Monthly data were averaged over years. A comparison of seasonal patterns of Noctiluca abundance pointed to the persistence of a bimodal seasonal cycle in both regions. The major peak was observed during spring in the Black Sea and during the winter (Northeast) monsoon in the Arabian Sea. The timing of the second (minor) peak was different over regions as well. This peak was modulated by advection of seasonally fluctuating velocity of coastal currents which transport waters enriched by nutrients by coastal upwelling. The abundance of Noctiluca of the major peak (with the concentration around 1.5*10<sup>6</sup> cells m<sup>-3</sup>) was from one to two orders as much high in the western Arabian Sea compared to the northern Black Sea. The remotely sensed chlorophyll-a concentration during the time of the major seasonal peak exhibited a fivefold difference over these regions. In terms of nutrient<sub></sub>concentration in the upper mixed layer (in particular, nitrates and silicates), a difference of about one order of magnitude was observed.</p>


2013 ◽  
Vol 10 (11) ◽  
pp. 7689-7702 ◽  
Author(s):  
B. Gaye ◽  
B. Nagel ◽  
K. Dähnke ◽  
T. Rixen ◽  
N. Lahajnar ◽  
...  

Abstract. Sedimentation in the ocean is fed by large aggregates produced in the surface mixed layer that sink rapidly through the water column. These particles sampled by sediment traps have often been proposed to interact by disaggregation and scavenging with a pool of fine suspended matter with very slow sinking velocities and thus a long residence time. We investigated the amino acid (AA) composition and stable nitrogen isotopic ratios of suspended matter (SPM) sampled during the late SW monsoon season in the Arabian Sea and compared them to those of sinking particles to understand organic matter degradation/modification during passage through the water column. We found that AA composition of mixed layer suspended matter corresponds more to fresh plankton and their aggregates, whereas AA composition of SPM in the sub-thermocline water column deviated progressively from mixed layer composition. We conclude that suspended matter in deep waters and in the mixed layers of oligotrophic stations is dominated by fine material that has a long residence time and organic matter that is resistant to degradation. SPM in areas of high primary productivity is essentially derived from fresh plankton and thus has a strong imprint of the subsurface nitrate source, whereas SPM at oligotrophic stations and at subthermocline depths appears to exchange amino acids and nitrogen isotopes with the dissolved organic carbon (DOC) pool influencing also the δ15N values.


Tellus ◽  
1978 ◽  
Vol 30 (2) ◽  
pp. 117-125 ◽  
Author(s):  
S. K. Ghosh ◽  
M. C. Pant ◽  
B. N. Dewan

2003 ◽  
Vol 107 (3) ◽  
pp. 683-695 ◽  
Author(s):  
D. Bala Subrahamanyam ◽  
Radhika Ramachandran ◽  
K. Sen Gupta ◽  
Tuhin K. Mandal

Sign in / Sign up

Export Citation Format

Share Document