Some aspects of the Arabian sea summer monsoon

Tellus ◽  
1974 ◽  
Vol 26 (4) ◽  
pp. 464-476 ◽  
Author(s):  
Kshudiram Saha
Keyword(s):  
2021 ◽  
Vol 166 ◽  
pp. 105278
Author(s):  
K.U. Abdul Jaleel ◽  
Usha V. Parameswaran ◽  
Aiswarya Gopal ◽  
Chippy Khader ◽  
V.N. Sanjeevan ◽  
...  

Tellus ◽  
1978 ◽  
Vol 30 (2) ◽  
pp. 117-125 ◽  
Author(s):  
S. K. Ghosh ◽  
M. C. Pant ◽  
B. N. Dewan

2013 ◽  
Vol 141 (6) ◽  
pp. 2096-2106 ◽  
Author(s):  
V. V. M. Jagannadha Rao ◽  
M. Venkat Ratnam ◽  
Y. Durga Santhi ◽  
M. Roja Raman ◽  
M. Rajeevan ◽  
...  

Abstract Global positioning system (GPS) radio occultation (RO) data available during 2001–10 have been used to examine the variations in the refractivity during the onset of Indian summer monsoon (ISM) over the east Arabian Sea (5°–15°N, 65°–75°E). An enhancement of 5–10 N-units in the refractivity is observed around 4.8 km (~600 hPa) a few days (9.23 ± 3.6 days) before onset of the monsoon over Kerala, India. This is attributed to moisture buildup over the Arabian Sea during the monsoon onset phase. A sudden increase (1.5–2 K) in mean upper-tropospheric temperature at the time of onset and during the active phase of the monsoon is attributed to convective activity and the release of latent heat. On the day of monsoon onset over Kerala, an appreciable dip in the refractivity is observed that persisted for 1–3 days followed by an enhancement in refractivity with the active phase of the monsoon. An arbitrary value of 128 N-units difference between 4.8 km (~600 hPa) and 16 km (~100 hPa) coupled with a dip in refractivity on the day of monsoon arrival might give an indication of clear transition of atmospheric conditions and the detection of monsoon onset. Further, a good relation is also found between the activity of monsoon and variability in the refractivity.


2018 ◽  
Vol 157 (6) ◽  
pp. 908-919 ◽  
Author(s):  
Mingjiang Cai ◽  
Zhaokai Xu ◽  
Peter D. Clift ◽  
Boo-Keun Khim ◽  
Dhongil Lim ◽  
...  

AbstractWe present a new set of clay mineral and grain-size data for the siliciclastic sediment fraction from International Ocean Discovery Program (IODP) Site U1456 located in the eastern Arabian Sea to reconstruct the variabilities in the continental erosion and weathering intensity in the western Himalaya, elucidate the sediment source-to-sink processes and discuss the potential controls underlying these changes since 3.7 Ma. The clay minerals mainly consist of smectite (0–90%, average 44%) and illite (3–90%, average 44%), with chlorite (1–26%, average 7%) and kaolinite (0–19%, average 5%) as minor components. The compositional variations in the clay minerals at IODP Site U1456 suggest four phases of sediment provenance: the Indus River (phase 1, 3.7–3.2 Ma), the Indus River and Deccan Traps (phase 2, 3.2–2.6 Ma), the Indus River (phase 3, 2.6–1.2 Ma) and the Indus River and Deccan Traps (phase 4, 1.2–0 Ma). These provenance changes since 3.7 Ma can be correlated with variations in the Indian summer monsoon intensity. The siliciclastic sediments in the eastern Arabian Sea were mainly derived from the Indus River when the Indian summer monsoon was generally weak. In contrast, when the Indian summer monsoon intensified, the siliciclastic sediment supply from the Deccan Traps increased. In particular, this study shows that the smectite/(illite+chlorite) ratio is a sensitive tool for reconstructing the history of the variation in the Indian summer monsoon intensity over the continents surrounding the Arabian Sea since 3.7 Ma.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 562
Author(s):  
Mathieu Morvan ◽  
Xavier Carton

The Omani Coastal Current (OCC) flowing northward along the southern coast of Oman during the summer monsoon is associated with an upwelling system. The mesoscale circulation of the western Arabian Sea is dominated by energetic mesoscale eddies down to about 1000 m depth. They drive the pathways of the upwelling water masses and the Persian Gulf Outflow water. This paper focuses on the sub-mesoscale frontal dynamics in the OCC by analyzing the results from a regional realistic numerical simulation performed with a primitive equation model. Off the Omani coast, the interaction between the upwelling fronts and the mesoscale eddies triggers the frontogenesis at play in the surface mixed layer during the summer monsoon. In spring, sub-mesoscale eddies are generated at the Cape of Ra’s al Hadd due to the horizontal shear instabilities undergone by the OCC. The OCC also drives and elongates Peddies formed during the Summer monsoon and located below the thermocline. Finally, the interaction between mesoscale eddies and the upwelling system leads to the formation of sub-mesoscale eddies at depth through baroclinic instabilities.


2017 ◽  
Vol 13 (7) ◽  
pp. 759-778 ◽  
Author(s):  
Priscilla Le Mézo ◽  
Luc Beaufort ◽  
Laurent Bopp ◽  
Pascale Braconnot ◽  
Masa Kageyama

Abstract. The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial–interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20–150° W, 30° S–60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.


Sign in / Sign up

Export Citation Format

Share Document