scholarly journals Amino acid composition and <i>δ</i><sup>15</sup>N of suspended matter in the Arabian Sea: implications for organic matter sources and degradation

2013 ◽  
Vol 10 (11) ◽  
pp. 7689-7702 ◽  
Author(s):  
B. Gaye ◽  
B. Nagel ◽  
K. Dähnke ◽  
T. Rixen ◽  
N. Lahajnar ◽  
...  

Abstract. Sedimentation in the ocean is fed by large aggregates produced in the surface mixed layer that sink rapidly through the water column. These particles sampled by sediment traps have often been proposed to interact by disaggregation and scavenging with a pool of fine suspended matter with very slow sinking velocities and thus a long residence time. We investigated the amino acid (AA) composition and stable nitrogen isotopic ratios of suspended matter (SPM) sampled during the late SW monsoon season in the Arabian Sea and compared them to those of sinking particles to understand organic matter degradation/modification during passage through the water column. We found that AA composition of mixed layer suspended matter corresponds more to fresh plankton and their aggregates, whereas AA composition of SPM in the sub-thermocline water column deviated progressively from mixed layer composition. We conclude that suspended matter in deep waters and in the mixed layers of oligotrophic stations is dominated by fine material that has a long residence time and organic matter that is resistant to degradation. SPM in areas of high primary productivity is essentially derived from fresh plankton and thus has a strong imprint of the subsurface nitrate source, whereas SPM at oligotrophic stations and at subthermocline depths appears to exchange amino acids and nitrogen isotopes with the dissolved organic carbon (DOC) pool influencing also the δ15N values.

2013 ◽  
Vol 10 (8) ◽  
pp. 13317-13352
Author(s):  
B. Gaye ◽  
B. Nagel ◽  
K. Dähnke ◽  
T. Rixen ◽  
N. Lahajnar ◽  
...  

Abstract. Sedimentation in the ocean is fed by large aggregates produced in the surface mixed layer that sink rapidly through the water column. These particles sampled by sediment traps have often been proposed to interact by disaggregation and scavenging with a pool of fine suspended matter with very slow sinking velocities and thus a long residence time. We investigated the amino acid composition and stable nitrogen isotopic ratios of suspended matter sampled during the late SW monsoon season in the Arabian Sea and compared them to those of sinking particles to investigate organic matter degradation/modification during passage through the water column. We found that amino acid (AA) composition of mixed layer suspended matter corresponds more to fresh plankton and their aggregates, whereas AA composition of suspended matter in the sub-thermocline water column deviated progressively from mixed layer composition. We conclude that suspended matter in deep waters and in the mixed layers of oligotrophic stations is dominated by fine material that has a long residence time and organic matter that is resistant to degradation. Whereas SPM in areas of high primary productivity is essentially derived from fresh plankton and thus has a strong imprint of the subsurface nitrate source, SPM at oligotrophic stations and at subthermocline depths appears to exchange amino acids with the DOC pool influencing also the δ15N values.


MAUSAM ◽  
2021 ◽  
Vol 47 (4) ◽  
pp. 355-368
Author(s):  
R.R. RAO ◽  
K. V. SANIL KUMAR ◽  
BASIL MATHEW

The observed short term variability in the current field of the upper layers at selected locations in the Arabian Sea is examined utilising the available short (1-2 weeks) time series of moored currentmeter records obtained from former USSR stationary ship polygons during MONSOON-77 and MONEX-79 field experiments. Supplementary time series data sets on surface wind, sub-surface temperature and salinity were also made use of to explain the observed structure and variability of current field, in the upper 2OOm water column. The thermal regime in the central Arabian Sea showed cooling and deepening of the surface mixed layer with the onset and progress of the summer monsoon during MONSOON- 77 while the corresponding variability was marginal in the western and south-central Arabian Sea during pre-onset regime of MONEX-79, The Ekman balance appeared to be limited to the mixed layer, only during pre-onset regime of MONSOON-77 and was absent during pre-onset and onset regimes of MONEX-79 suggesting the importance of internal ocean dynamics influencing the current field. Most of the current records showed rich structure with superposed oscillations extending over the entire 200m water column. During progress regime of MONSOON-77 and at the equatorial station during pre-onset regime of MONEX-79. dramatic reduction in the current strength is noticed from mixed layer to thermocline due to differences in the eddy viscosity. During MONEX-79, a strong subsurface core of southerly flow ( -100 cm/s) was noticed at the equator (49°E) even before the onset of monsoon. The vector time series of current-meter records subjected to rotary spectral analysis showed inertial oscillations in the flow regime more prominently during MONSOON-77 as compared to MONEX-79. R.R. RAO. K. V. SANIL [email protected] and BASIL [email protected]


2018 ◽  
Author(s):  
Marine Bretagnon ◽  
Aurélien Paulmier ◽  
Véronique Garçon ◽  
Boris Dewitte ◽  
Sérena Illig ◽  
...  

Abstract. The fate of the Organic Matter (OM) produced by marine life controls the major biogeochemical cycles of the Earth’s system. The OM produced through photosynthesis is either preserved, exported towards sediments or degraded through remineralisation in the water column. The productive Eastern Boundary Upwelling Systems (EBUSs) associated with Oxygen Minimum Zones (OMZs) should foster OM preservation due to low O2 conditions, but their intense and diverse microbial activity should enhance OM degradation. To investigate this contradiction, sediment traps were deployed near the oxycline and in the OMZ core on an instrumented moored line off Peru, providing high temporal resolution O2 series characterizing two seasonal steady states at the upper trap: suboxic ([O2] 


2018 ◽  
Vol 15 (16) ◽  
pp. 4973-4993 ◽  
Author(s):  
Christian Schlosser ◽  
Katrin Schmidt ◽  
Alfred Aquilina ◽  
William B. Homoky ◽  
Maxi Castrillejo ◽  
...  

Abstract. The island of South Georgia is situated in the iron (Fe)-depleted Antarctic Circumpolar Current of the Southern Ocean. Iron emanating from its shelf system fuels large phytoplankton blooms downstream of the island, but the actual supply mechanisms are unclear. To address this, we present an inventory of Fe, manganese (Mn), and aluminium (Al) in shelf sediments, pore waters, and the water column in the vicinity of South Georgia, alongside data on zooplankton-mediated Fe cycling processes, and provide estimates of the relative dissolved Fe (DFe) fluxes from these sources. Seafloor sediments, modified by authigenic Fe precipitation, were the main particulate Fe source to shelf bottom waters as indicated by the similar Fe ∕ Mn and Fe ∕ Al ratios for shelf sediments and suspended particles in the water column. Less than 1 % of the total particulate Fe pool was leachable surface-adsorbed (labile) Fe and therefore potentially available to organisms. Pore waters formed the primary DFe source to shelf bottom waters, supplying 0.1–44 µmol DFe m−2 d−1. However, we estimate that only 0.41±0.26 µmol DFe m−2 d−1 was transferred to the surface mixed layer by vertical diffusive and advective mixing. Other trace metal sources to surface waters included glacial flour released by melting glaciers and via zooplankton egestion and excretion processes. On average 6.5±8.2 µmol m−2 d−1 of labile particulate Fe was supplied to the surface mixed layer via faecal pellets formed by Antarctic krill (Euphausia superba), with a further 1.1±2.2 µmol DFe m−2 d−1 released directly by the krill. The faecal pellets released by krill included seafloor-derived lithogenic and authigenic material and settled algal debris, in addition to freshly ingested suspended phytoplankton cells. The Fe requirement of the phytoplankton blooms ∼ 1250 km downstream of South Georgia was estimated as 0.33±0.11 µmol m−2 d−1, with the DFe supply by horizontal/vertical mixing, deep winter mixing, and aeolian dust estimated as ∼0.12 µmol m−2 d−1. We hypothesize that a substantial contribution of DFe was provided through recycling of biogenically stored Fe following luxury Fe uptake by phytoplankton on the Fe-rich shelf. This process would allow Fe to be retained in the surface mixed layer of waters downstream of South Georgia through continuous recycling and biological uptake, supplying the large downstream phytoplankton blooms.


2009 ◽  
Vol 6 (4) ◽  
pp. 535-544 ◽  
Author(s):  
I. Hense ◽  
B. Quack

Abstract. The relative importance of potential source and sink terms for bromoform (CHBr3) in the tropical Atlantic Ocean is investigated with a coupled physical-biogeochemical water column model. Bromoform production is either assumed to be linked to primary production or to phytoplankton losses; bromoform decay is treated as light dependent (photolysis), and in addition either vertically uniform, proportional to remineralisation or to nitrification. All experiments lead to the observed subsurface maximum of bromoform, corresponding to the subsurface phytoplankton biomass maximum. In the surface mixed layer, the concentration is set by entrainment from below, photolysis in the upper few meters and the outgassing to the atmosphere. The assumed bromoform production mechanism has only minor effects on the solution, but the various loss terms lead to significantly different bromoform concentrations below 200 m depth. The best agreement with observations is obtained when the bromoform decay is coupled to nitrification (parameterised by an inverse proportionality to the light field). Our model results reveal a pronounced seasonal cycle of bromoform outgassing, with a minimum in summer and a maximum in early winter, when the deepening surface mixed layer reaches down into the bromoform production layer.


2015 ◽  
Vol 72 (6) ◽  
pp. 2021-2028 ◽  
Author(s):  
John F. Marra ◽  
Tommy D. Dickey ◽  
Albert J. Plueddemann ◽  
Robert A. Weller ◽  
Christopher S. Kinkade ◽  
...  

Abstract We review bio-optical and physical data from three mooring experiments, the Marine Light–Mixed Layers programme in spring 1989 and 1991 in the Iceland Basin (59°N/21°W), and the Forced Upper Ocean Dynamics Experiment in the central Arabian Sea from October 1994 to 1995 (15.5°N/61.5°E). In the Iceland Basin, from mid-April to mid-June in 1989, chlorophyll-a concentrations are sensitive to small changes in stratification, with intermittent increases early in the record. The spring increase occurs after 20 May, coincident with persistent water column stratification. In 1991, the bloom occurs 2 weeks earlier than in 1989, with a background of strong short-term and diurnal variability in mixed layer depth and minimal horizontal advection. In the Arabian Sea, the mixing response to the northeast and southwest monsoons, plus the response to mesoscale eddies, produces four blooms over the annual cycle. The mixed layer depth in the Arabian Sea never exceeds the euphotic zone, allowing interactions between phytoplankton and grazer populations to become important. For all three mooring experiments, change in water column stratification is key in producing phytoplankton blooms.


2021 ◽  
Author(s):  
Lakshmi Shenoy

&lt;p&gt;A winter monsoon cruise was undertaken in the northern Arabian Sea to understand the bio-physical interaction responsible for the occurrence of phytoplankton bloom in the region. The observation shows strong convective mixing with a dense and deeper mixed layer (MLD: 100-140 m) and well-oxygenated upper water column (&gt;95% saturation). The chlorophyll concentration was low (0.1 -0.3 &amp;#181;g/l) despite having ample nitrate (~2.5 &amp;#181;M) in the surface layer. The region, however, was deprived of micro phytoplankton, especially diatomic species and Noctiluca Scintillans, and was dominated by the picophytoplankton (77%-85%). The mean Si/N ratio in the upper 100 m was 0.72 indicating &amp;#8220;Silicate stressed&amp;#8221; condition for the proliferation of diatoms. Even a deeper mixed layer could not penetrate into the silicicline (~150m) which was deeper than the nitracline (~110m). In addition, the euphotic depth (~49m) was much shallower than the mixed layer depth suggesting the Sverdrup critical depth limitation in the northern Arabian Sea. We further show that the bloom initiated only when the mixed layer shoals towards the euphotic zone. Our observations suggest that two primary factors, the stoichiometric ratio of nutrients, especially Si/N ratio, in the mixed layer and re-stratification of the upper water column, govern the phytoplankton blooming in the northern Arabian Sea during the later winter monsoon.&lt;/p&gt;


2021 ◽  
Author(s):  
Padmasini Behera ◽  
Manish Tiwari

&lt;p&gt;The variability of the South Asian Monsoon (SoAM) in warmer climatic conditions is not established yet. The Mid-Pliocene Warm Period (MPWP, 3.264 to 3.025 ma) is the most recent such event when the boundary conditions were similar to present with similar CO&lt;sub&gt;2&lt;/sub&gt; concentration (more than 400 ppmv) and temperature (2-3&amp;#176;C higher than present). It presents the best analogue for understanding the impacts of future global warming on SoAM. The high-resolution study of denitrification from the eastern Arabian Sea can provide an insight into the SoAM variability during MPWP. Denitrification is the process by which nitrate is reduced to nitrogen gas (N&lt;sub&gt;2&lt;/sub&gt; or N&lt;sub&gt;2&lt;/sub&gt;O) during organic matter decay in oxygen minima zones in the water column. The denitrification process enriches the nitrate pool with &lt;sup&gt;15&lt;/sup&gt;N, which is incorporated in the particulate organic matter. Denitrification is governed by the surface water productivity related to SoAM strength and the water column ventilation. We analyzed the nitrogen isotopic ratio of sedimentary organic matter (SOM, &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;SOM&lt;/sub&gt;) to examine the denitrification in the eastern Arabian Sea. Total nitrogen (TN %) and total organic carbon (TOC%) are used to estimate the surface water productivity from the sediment collected during expedition IODP 355, Hole U1456A. We find that the &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;SOM&lt;/sub&gt; values vary between 7-9 &amp;#8240; during 3.22-3.15 Ma and 2.9-2.75 Ma indicating high denitrification. High &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;SOM&lt;/sub&gt; values coincide with high productivity as shown by both TN and TOC. It shows two major periods in the late Pliocene (3.22-3.15 Ma and 2.92-2.75 Ma) associated with stronger denitrification and high productivity. These results indicate the intensification of SoAM during warmer periods of Late Pliocene and at the start of intensification of Northern hemisphere glaciation. The enhanced denitrification during this period could possibly be due to a reduction in deep water ventilation and monsoon driven upsurge in productivity.&lt;/p&gt;


2019 ◽  
Vol 157 (6) ◽  
pp. 1001-1011 ◽  
Author(s):  
Rajeev Kumar Satpathy ◽  
Stephan Steinke ◽  
Arun Deo Singh

AbstractUpper water column dynamics in the eastern Arabian Sea were reconstructed in order to investigate changes in the activity of the South Asian / Indian monsoon during the early Pleistocene (c. 1.5–2.7 Ma). We used planktic foraminiferal assemblage records combined with isotopic (δ18O and δ13C) data, Mg/Ca-based sea surface temperatures and seawater δ18O records to estimate changes in surface water conditions at International Ocean Discovery Program (IODP) Site U1457. Our records indicate two distinct regimes of monsoon-induced changes in upper water structure during the periods c. 1.55–1.65 Ma and c. 1.85–2.7 Ma. We infer that a more stratified upper water column and oligotrophic mixed layer conditions prevailed during the period 1.85–2.7 Ma, which may be due to overall weaker South Asian / Indian winter (NE) and summer (SW) monsoon circulations. The period 1.55–1.65 Ma was characterized by enhanced eutrophication of the mixed layer, which was probably triggered by intensified winter (NE) monsoonal winds. The long-term trend in hydrographic changes during 1.55–1.65 Ma appears to be superimposed by short-term variations, probably reflecting glacial/interglacial changes. We suggest that an intensification of the South Asian / Indian winter monsoon circulation occurred between ∼1.65 Ma and 1.85 Ma, which is most likely due to the development of strong meridional and zonal atmospheric circulations (i.e. Walker Circulation and Hadley Circulation) because of strong equatorial East–West Pacific temperature gradients.


Clay Minerals ◽  
1989 ◽  
Vol 24 (1) ◽  
pp. 33-42 ◽  
Author(s):  
P. Ruch ◽  
A. Bapst ◽  
B. Kübler

AbstractTalc is very often an important constituent of suspended matter in marine and lacustrine environments but is rarely detected in sediments. The presence of talc is usually attributed to its industrial and agricultural application. Its recent anthropogenic use, long residence time in the water column due to its small particle size, transport by surface currents and winds, and its tendency to resuspension from the sediment are factors which contribute to the preferential detection of talc in suspended matter.


Sign in / Sign up

Export Citation Format

Share Document