Abstract 231: Bone Marrow-Derived Mesenchymal Stem Cells from Amputated Limbs of Patients with Critical Limb Ischemia Provide Stromal Support for Endothelial Cells

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Ruoya Wang ◽  
Ian Copland ◽  
Haiyan Li ◽  
Alexandra Peister ◽  
Todd McDevitt ◽  
...  

Critical limb ischemia (CLI) often results in amputation, but autologous cellular therapy using bone marrow-derived mesenchymal stem cells (MSCs) may be able to prevent this outcome. However, the quality of MSCs in the CLI population is not clear. Amputated CLI limbs contain reservoirs of MSCs that can be used to characterize their stromal capacity. We hypothesize that MSC stromal capacity is relatively preserved in ischemic limbs compared to ones from healthy donors. Methods Healthy donor MSCs (hdMSCs, n=2) and ischemic MSCs (iMSCs, n=3) from amputated limbs of non-diabetic CLI patients were cultured. Human microdermal ECs were commercially obtained. Co-culture pellets (1:1 ratio) of hdMSC:EC, iMSC:EC, and EC alone were formed and cultured in 3-D fibrin hydrogels in EC growth media. Images of the pellets and invasion areas were captured up to 5 days. The invasion area was quantified as the difference between the total and pellet area normalized to initial pellet area. Experiments were performed in quadruplicates and co-culture experiments were duplicated. Results iMSC:EC co-culture provided similar stromal support as the healthy donor cohort. Both MSC groups were significantly greater than the ECs alone following day 2 (see figure, *P<0.0005, ANOVA). Both MSC groups also exhibited significant increase in invasion area with time (P<0.01) while the ECs did not (P>0.5). Conclusion This is the first study to demonstrate that iMSCs provide similar stromal support to ECs as healthy hdMSCs, thus iMSCs may be of sufficient quality for use in autologous therapy. We are currently quantifying secretome expressions of the iMSCs to provide insights into mechanisms of the stromal support.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


Author(s):  
Yipeng Du ◽  
Xiaoting Li ◽  
Wenying Yan ◽  
Zhaohua Zeng ◽  
Dunzheng Han ◽  
...  

ObjectiveRegenerative therapy using mesenchymal stem cells (MSC) is a promising therapeutic method for critical limb ischemia (CLI). To understand how the cells are involved in the regenerative process of limb ischemia locally, we proposed a metabolic protein labeling method to label cell proteomes in situ and then decipher the proteome dynamics of MSCs in ischemic hind limb.Methods and ResultsIn this study, we overexpressed mutant methionyl-tRNA synthetase (MetRS), which could utilize azidonorleucine (ANL) instead of methionine (Met) during protein synthesis in MSCs. Fluorescent non-canonical amino-acid tagging (FUNCAT) was performed to detect the utilization of ANL in mutant MSCs. Mice with hindlimb ischemia (HLI) or Sham surgery were treated with MetRSmut MSCs or PBS, followed by i.p. administration of ANL at days 0, 2 6, and 13 after surgery. FUNCAT was also performed in hindlimb tissue sections to demonstrate the incorporation of ANL in transplanted cells in situ. At days 1, 3, 7, and 14 after the surgery, laser doppler imaging were performed to detect the blood reperfusion of ischemic limbs. Ischemic tissues were also collected at these four time points for histological analysis including HE staining and vessel staining, and processed for click reaction based protein enrichment followed by mass spectrometry and bioinformatics analysis. The MetRSmut MSCs showed strong green signal in cell culture and in HLI muscles as well, indicating efficient incorporation of ANL in nascent protein synthesis. By 14 days post-treatment, MSCs significantly increased blood reperfusion and vessel density, while reducing inflammation in HLI model compared to PBS. Proteins enriched by click reaction were distinctive in the HLI group vs. the Sham group. 34, 31, 49, and 26 proteins were significantly up-regulated whereas 28, 32, 62, and 27 proteins were significantly down-regulated in HLI vs. Sham at days 1, 3, 7, and 14, respectively. The differentially expressed proteins were more pronounced in the pathways of apoptosis and energy metabolism.ConclusionIn conclusion, mutant MetRS allows efficient and specific identification of dynamic cell proteomics in situ, which reflect the functions and adaptive changes of MSCs that may be leveraged to understand and improve stem cell therapy in critical limb ischemia.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4103-4103
Author(s):  
Camillo Almici ◽  
Rosanna Verardi ◽  
Simona Braga ◽  
Arabella Neva ◽  
Domenico Russo ◽  
...  

Abstract Mesenchymal stem cells (MSC) are multipotent cells that are considered one of the most promising product for cellular therapy in regenerative medicine. MSC have been obtained and expanded from bone marrow and umbilical cord blood in adequate amounts for clinical applications. Under the right conditions, MSC could migrate from bone marrow into the peripheral circulation; however MSC have not been routinely isolated from peripheral blood, and studies are rare and not conclusive. The aim of the present study was to evaluate mobilised peripheral blood (MPB), obtained from patients undergoing apheresis collection of circulating hematopoietic progenitor cells, as a potential source of MSC for clinical applications. MPB samples (500–900 × 106 cells, N = 17) were separated by negative lineage-depletion immunoselection (RosetteSep). Selected cells were seeded in multi-well plates at low density in MesenCult Basal Medium without and with different combinations of growth factors (EGF, PDGF-BB, b-FGF). On reaching confluence, adherent cells were detached by 0.25% trypsin-EDTA treatment and replated for at least two passages. At each passage, surface antigen expression was analyzed by flowcytometry (CD45, CD34, CD105, CD44, CD73, CD166, CD31, HLA-DR and VE-caderine). Following immunoselection 9.5–17.1 × 106 cells were recovered from MPB samples. Cultured cells reached confluency in 3–4 weeks on first passage and in two weeks thereafter. Immunophenotyping showed negativity for CD45 antigen. The absence of growth factors in culture medium conditioned MSC growth capability, while the addition of PDGF-BB+EGF or b-FGF was able to boost the number of CD45−/CD73+/CD90+ cells in culture (see figure). However expansion remains still sub-optimal, having been reached in 8/17 samples. In conclusion, we demonstrate that MSC can be obtained from MPB, but expansion requires longer time period and appears more difficult compared to bone marrow. Therefore, further studies need to be conducted to find better culture conditions and optimal growth factor combinations to support MPB-derived MSC expansion. Figure Figure


Cytotherapy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. S186-S187
Author(s):  
S. Mohamed ◽  
L. Howard ◽  
A. Duffy ◽  
A. Finnerty ◽  
M. Holohan ◽  
...  

2017 ◽  
Author(s):  
◽  
A. Parra-Barrera

Mesenchymal stem cells (MSC) represent a heterogeneous population with the capacity to self-renew and differentiate into different cell types. At the middle of the last century these cells initially were described in bone marrow (BM), thence this tissue has become the gold standard for obtaining and characterization of MSC. It is known that these cells are housed in specific areas called niches distributed throughout all body, where they contribute to tissue regeneration processes of self-tissue were they are located. However, finding an alternative source of CTM with the same characteristics that have showed in MO, but its obtention no represent a risk since the donor is essential to their use for therapeutic purposes. In this study we isolated mesenchymal stem cells from bone marrow, adipose tissue and Wharton’s jelly and they were compared in their characteristics in according to the standards of the International Society for Cellular Therapy (ISCT). The results showed that the morphology as well as adipogenic and osteogenic differentiation and also the expression of surface antigens (CD90, CD73, and CD105) from all tissues accomplished the standards, although Wharton’s jelly represented the best option.


Sign in / Sign up

Export Citation Format

Share Document