scholarly journals Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies

2021 ◽  
Vol 22 (15) ◽  
pp. 8132
Author(s):  
Jennifer Zhang ◽  
Oscar Hou-In Chou ◽  
Yiu-Lam Tse ◽  
Kwong-Man Ng ◽  
Hung-Fat Tse

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Cynthia St. Hilaire ◽  
Hui Jin ◽  
Yuting Huang ◽  
Dan Yang ◽  
Alejandra Negro ◽  
...  

Objective: The objective of this study was to develop a patient-specific induced pluripotent stem cell (iPSC)-based disease model to understand the process by which CD73-deficiency leads to vascular calcification in the disease, Arterial Calcification due to Deficiency of CD73 (ACDC). Approach & Results: ACDC is an autosomal recessive disease resulting from mutations in the gene encoding for CD73, which converts extracellular AMP to adenosine. CD73-deficiency manifests with tortuosity and vascular calcification of the medial layer of lower-extremity arteries, a pathology associated with diabetes and chronic kidney disease. We previously identified that dermal fibroblasts isolated from ACDC patients calcify in vitro, however in vivo studies of the vasculature are limited, as murine models of CD73 deficiency do not recapitulate the human disease phenotype. Thus, we created iPSCs from ACDC patients and control fibroblasts. ACDC and Control iPSCs form teratomas when injected in immune-compromised mice, however ACDC iPSC teratomas exhibit extensive calcifications. Control and ACDC iPSCs were differentiated down the mesenchymal lineage (MSC) and while there was no difference in chondrogenesis and adipogenesis, ACDC iMSCs underwent osteogenesis sooner than control iPSC, have higher activity of tissue-nonspecific alkaline phosphatase (TNAP), and lower levels of extracellular adenosine. During osteogenic simulation, TNAP activity in ACDC cells significantly increased adenosine levels, however, not to levels needed for functional compensatory stimulation of the adenosine receptors. Inhibition of TNAP with levimisole ablates this increase in adenosine. Treatment with an A2b adenosine receptor (AR) agonist drastically reduced TNAP activity in vitro, and calcification in ACDC teratomas, as did treatment with etidronate, which is currently being tested in a clinical trial on ACDC patients. Conclusions: These results illustrate a pro-osteogenic phenotype in CD73-deficient cells whereby TNAP activity attempts to compensate for CD73 deficiency, but subsequently induces calcification that can be reversed by activation of the A2bAR. The iPSC teratoma model may be used to screen other potential therapeutics for calcification disorders.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Michelle R Santoso ◽  
Yuko Tada ◽  
Gentaro Ikeda ◽  
Ji-Hye Jung ◽  
Evgeniya Vaskova ◽  
...  

Background: Induced pluripotent stem cells (iPSCs) and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient-specific therapy for myocardial injury (MI). Our previous work showed that the iCMs restore the injured murine myocardium through secretion of paracrine factors, modulating apoptotic pathways to restore the murine peri-infarct region (PIR). Hypothesis: iCM-derived exosomes (iCM-Ex), a major constituent of the iCM secretome, may salvage the injured cardiomyocytes in the PIR. Methods: iCM-Ex were precipitated from iCM supernatant and characterized using various molecular analyses. Immunodeficient mice sustained MIs and received iCMs, iCM-Ex, or PBS control via direct intramyocardial injection into the PIR. Cardiac MRI assessed LV ejection fraction (LVEF) and viability at 2- and 4-week post-injection. iCMs, iCM-Ex, and PIR tissue were isolated for molecular and histological analyses. Results: iCM-Ex measured approximately 142 nm and expressed CD63 and CD9. iCM and iCM-Ex miRNA profiles had significant overlap, indicating that exosomal content was reflective of the parent cell. In vitro iCM apoptosis was increased significantly by hypoxia and exosome biogenesis inhibition while iCM-Ex or rapamycin reduced iCM apoptosis (p<0.05, vs. control). Mice treated with iCMs or iCM-Ex had significantly improved LVEF and LV viability compared to the control (p<0.05). Apoptosis and fibrosis were significantly reduced in iCM- and iCM-Ex treated mice. Autophagy and associated mTOR signaling pathway were significantly enhanced in iCM-Ex treatment group. Conclusions: iCM-Ex demonstrated similar efficacy as the iCMs in improving post-MI cardiac function by regulating autophagy and apoptosis of hypoxia injured cardiomyocytes. This finding represents the potential of cell-free, patient-specific biologic to treat ischemic cardiomyopathy by stimulation of an endogenous repair mechanism.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1733 ◽  
Author(s):  
Michele Filippo Buono ◽  
Lisa von Boehmer ◽  
Jaan Strang ◽  
Simon P. Hoerstrup ◽  
Maximilian Y. Emmert ◽  
...  

Genetic cardiomyopathies are characterized by changes in the function and structure of the myocardium. The development of a novel in vitro model could help to better emulate healthy and diseased human heart conditions and may improve the understanding of disease mechanisms. In this study, for the first time, we demonstrated the generation of cardiac organoids using a triculture approach of human induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs)—from healthy subjects and cardiomyopathy patients—human cardiac microvascular endothelial cells (HCMECs) and human cardiac fibroblasts (HCFs). We assessed the organoids’ suitability as a 3D cellular model for the representation of phenotypical features of healthy and cardiomyopathic hearts. We observed clear differences in structure and beating behavior between the organoid groups, depending on the type of hiPS-CMs (healthy versus cardiomyopathic) used. Organoids may thus prove a promising tool for the design and testing of patient-specific treatments as well as provide a platform for safer and more efficacious drug development.


2020 ◽  
Author(s):  
◽  
Loren Ornelas ◽  
Emilda Gomez ◽  
Lindsay Panther ◽  
Aaron Frank ◽  
...  

SummaryNeurodegenerative diseases present a challenge for systems biology, due to the lack of reliable animal models and the difficulties in obtaining samples from patients at early stages of disease, when interventions might be most effective. Studying induced pluripotent stem cell (iPSC)-derived neurons could overcome these challenges and dramatically accelerate and broaden therapeutic strategies. Here we undertook a network-based multi-omic characterization of iPSC-derived motor neurons from ALS patients carrying genetically dominant hexanucleotide expansions in C9orf72 to gain a deeper understanding of the relationship between DNA, RNA, epigenetics and protein in the same pool of tissue. ALS motor neurons showed the expected C9orf72-related alterations to specific nucleoporins and production of dipeptide repeats. RNA-seq, ATAC-seq and data-independent acquisition mass-spectrometry (DIA-MS) proteomics were then performed on the same motor neuron cultures. Using integrative computational methods that combined all of the omics, we discovered a number of novel dysregulated pathways including biological adhesion and extracellular matrix organization and disruption in other expected pathways such as RNA splicing and nuclear transport. We tested the relevance of these pathways in vivo in a C9orf72 Drosophila model, analyzing the data to determine which pathways were causing disease phenotypes and which were compensatory. We also confirmed that some pathways are altered in late-stage neurodegeneration by analyzing human postmortem C9 cervical spine data. To validate that these key pathways were integral to the C9 signature, we prepared a separate set of C9orf72 and control motor neuron cultures using a different differentiation protocol and applied the same methods. As expected, there were major overall differences between the differentiation protocols, especially at the level of in individual omics data. However, a number of the core dysregulated pathways remained significant using the integrated multiomic analysis. This new method of analyzing patient specific neural cultures allows the generation of disease-related hypotheses with a small number of patient lines which can be tested in larger cohorts of patients.


2020 ◽  
Vol 21 (23) ◽  
pp. 8910 ◽  
Author(s):  
Romana Zahumenska ◽  
Vladimir Nosal ◽  
Marek Smolar ◽  
Terezia Okajcekova ◽  
Henrieta Skovierova ◽  
...  

One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.


2019 ◽  
Vol 47 (2) ◽  
pp. 1067-1077 ◽  
Author(s):  
R. P. Pölönen ◽  
H. Swan ◽  
K. Aalto-Setälä

AbstractCatecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac disease characterized by arrhythmias under adrenergic stress. Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for CPVT. We characterized electrophysiological properties of CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying different mutations in RYR2 and evaluated effects of carvedilol and flecainide on action potential (AP) and contractile properties of hiPSC-CMs. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion (E3D) and L4115F mutation in RYR2. APs and contractile movement were recorded simultaneously from the same hiPSC-CMs. Differences in AP properties of ventricular like CMs were seen in CPVT and control CMs: APD90 of both E3D (n = 20) and L4115F (n = 25) CPVT CMs was shorter than in control CMs (n = 15). E3D-CPVT CMs had shortest AP duration, lowest AP amplitude, upstroke velocity and more depolarized diastolic potential than controls. Adrenaline had positive and carvedilol and flecainide negative chronotropic effect in all hiPSC CMs. CPVT CMs had increased amount of delayed after depolarizations (DADs) and early after depolarizations (EADs) after adrenaline exposure. E3D CPVT CMs had the most DADs, EADs, and tachyarrhythmia. Discordant negatively coupled alternans was seen in L4115F CPVT CMs. Carvedilol cured almost all arrhythmias in L4115F CPVT CMs. Both drugs decreased contraction amplitude in all hiPSC CMs. E3D CPVT CMs have electrophysiological properties, which render them more prone to arrhythmias. iPSC-CMs provide a unique platform for disease modeling and drug screening for CPVT. Combining electrophysiological measurements, we can gain deeper insight into mechanisms of arrhythmias.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Marcela K Preininger ◽  
Rajneesh Jha ◽  
Qingling Wu ◽  
Monalisa Singh ◽  
Joshua T Maxwell ◽  
...  

Introduction: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by diastolic store overload-induced Ca2+ waves during β-adrenergic receptor (β-AR) stimulation. Mysteriously, β-blockers are ineffective at abolishing stress-induced ventricular arrhythmias in ~25% of patients. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from these CPVT patients offer an attractive system for investigating the phenomenon, but it remains unknown whether iPSC-CMs can recapitulate clinically observed patient-specific drug responses. Hypothesis: This study assessed the hypothesis that patient-specific refractoriness to β-blocker therapy can be observed in vitro using CPVT iPSC-CMs. Methods: We generated iPSC-CMs from a control individual and a CPVT patient insensitive to the widely prescribed β-blocker nadolol, but responsive to flecainide, and compared the efficacy of the two drugs in vitro in diminishing diastolic Ca2+ waves and restoring Ca2+ spark parameters during β-AR stimulation. Results: In CPVT hiPSC-CMs (n = 34), β-AR agonism elicited intense diastolic Ca2+ waves and potentiated unduly frequent, large, and prolonged Ca2+ sparks compared to control iPSC-CMs (n = 12). Pursuant to the patient’s in vivo responses, nadolol-treated CPVT iPSC-CMs (n = 27) demonstrated inadequate improvement of Ca2+ handling defects during β-AR stimulation relative to flecainide-treated CPVT iPSC-CMs (n = 25). Nadolol showed no significant effect on the frequency of diastolic Ca2+ waves, but reduced mean amplitude by 50% (p < 0.0001). In contrast, flecainide reduced both frequency and amplitude by 83% (p < 0.001) and 72% (p < 0.0001), respectively. During nadolol treatment, Ca2+ spark frequency, width, and duration remained significantly altered, while flecainide restored all Ca2+ spark parameters to baseline levels. Conclusions: Clinically observed recalcitrance to β-blocker therapy in individuals with CPVT can be modeled in vitro using patient-derived iPSC-CMs. Furthermore, the efficacy of other drugs such as flecainide can be comparatively evaluated, supporting the use of patient-specific iPSC-CMs as a clinically-relevant implement of precision medicine.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Olivia T Ly ◽  
Grace Brown ◽  
Hanna Chen ◽  
Liang Hong ◽  
Xinge Wang ◽  
...  

Introduction: The limited success of pharmacological approaches to atrial fibrillation ( AF ) is due to limitations of in vitro and in vivo models and inaccessibility of human atrial tissue. Patient-specific induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) are a robust platform to model the heterogeneous myocardial substrate of AF, but their immaturity limits their fidelity. Objective: We hypothesized that a combinatorial approach of biochemical (triiodothyronine [ T3 ], insulin-like growth factor-1 [ IGF-1 ], and dexamethasone; collectively TID ), bioenergetic (fatty acids [ FA ]), and electrical stimulation ( ES ) will enhance electrophysiological ( EP ), structural, and metabolic maturity of iPSC- a CMs. Methods: We assessed maturation with whole cell patch clamping, calcium transients, immunofluorescence (IF), Seahorse Analyzer, contractility assay, RT-PCR, Western Blotting, and RNA sequencing (RNAseq). Using a time series with RNAseq we identified signaling pathways and transcriptional regulation that drive EP, structural, and metabolic atrial development and compared iPSC-aCM maturity with human aCMs (haCMs) obtained from the same patient. Results: TID+FA+ES significantly improved structural organization and cell morphology ( Fig. 1a ), enhanced membrane potential stability and improved depolarization ( Fig. 1b ), improved Ca 2+ kinetics with faster and increased Ca 2+ release from sarcoplasmic reticulum ( Fig. 1c ), and increased expression of Na + , Ca 2+ , and K + channels, markers of structural maturity, FA metabolism, and oxidative phosphorylation ( Fig. 1d ). There was no difference in each parameter between TID+FA+ES iPSC-aCMs and haCMs from the same patient. Conclusion: Our optimized, combinatorial TID+FA+ES approach markedly enhanced EP, structural, and metabolic maturity of human iPSC-aCMs, which will be useful for elucidating the genetic basis of AF developing precision drug therapies.


Sign in / Sign up

Export Citation Format

Share Document