Abstract 13180: Ultrasound Jugular Venous Pressure Collapse Point Predicts Elevated Right Atrial Pressure on Right Heart Catheterization in Obese and Nonobese Patients

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Libo Wang ◽  
Jonathan Harrison ◽  
Elizabeth Dranow ◽  
Lillian Khor

Introduction: Accurate intravascular volume status assessment is central to heart failure management, but current non-invasive bedside techniques remain a challenge. Visual inspection of jugular venous pulsation (JVP) is used as a surrogate for central venous pressure (CVP). Studies have shown variability and inaccuracy of the JVP exam in estimating CVP or right atrial pressure (RAP). Published methods of RAP estimation through internal jugular vein (IJV) ultrasonography are either complex or require offline analysis. We validated a simplified approach to ultrasonography of the JVP (uJVP) as a method to predict RAP. Methods: Adult patients undergoing right heart catheterization (RHC) were enrolled prior for IJV imaging with point of care ultrasound (POCUS) device, Butterfly iQ™. The IJV was identified on ultrasound with the patient reclined (head of bed between 30-45°) and followed cranially until tapering smaller than the adjacent carotid artery throughout the entirety of the respiratory cycle. The height of this collapse point from the sternal angle added to 5 centimeters was defined as ultrasound JVP (uJVP). Results: 77 participants underwent uJVP assessment on the same day prior to RHC. Average BMI was 33 kg/m 2 . The area under the curve (AUC) of uJVP and RAP greater than 10mmHg on RHC was 0.879 (95% CI 0.759-0.931, p<0.001), with AUC of 0.972 and 0.818 for non-obese and obese subgroups respectively, and AUC of 0.876 for elevated RAP and pulmonary capillary wedge pressure (PCWP). A uJVP cutoff of 9 or higher was 85% sensitive and 72% specific at identifying RAP greater than 10mmHg. Conclusion: We developed and validated a novel technique identifying the uJVP using POCUS which correlates with invasive RAP regardless of obesity. This technique predicted combined elevated left and right sided intracardiac pressures. The uJVP’s potential to enhance the diagnostic value of the bed-side examination in an increasingly obese heart failure population warrants further research.

2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Taku Omori ◽  
Goki Uno ◽  
Shunsuke Shimada ◽  
Florian Rader ◽  
Robert J. Siegel ◽  
...  

Background: A new grading of tricuspid regurgitation (TR) beyond severe has been proposed. However, few studies assessing the validity of such a new grading scheme of TR have been conducted. Therefore, we evaluated associations of TR grades beyond severe with patient outcome and hemodynamics. Methods: We retrospectively studied patients who underwent 2-dimensional echocardiography and were diagnosed with severe TR between January 2014 and December 2015. According to the vena contracta width of TR (VC), the patients were classified into 2 groups: VC under 14 mm (VC<14 mm) and VC 14 mm or greater (VC≥14 mm). Hemodynamic parameters were estimated by echocardiography and were obtained by right heart catheterization. Cardiovascular events were defined as cardiovascular death or admission for heart failure. Results: A total of 679 patients (mean 72±17 years, 56% women) were included. During follow-up (median, 158 days; range, 29–891), 210 patients experienced cardiovascular events. By multivariate analysis, VC≥14 mm and left ventricular ejection fraction were independent predictors of cardiovascular events (hazard ratio, 1.57 [1.06–2.33]; hazard ratio, 0.99 [0.98–0.99], respectively). Patients with VC≥14 mm had significantly lower cardiac index (median, 1.8 versus 2.1 L/min per m 2 , P =0.001) and a higher prevalence of right atrial pressure 15 mm Hg (74% versus 60%, P <0.001) on echocardiography. Also, right heart catheterization confirmed higher right atrial pressure in patients with VC≥14 mm than those with VC<14 mm (16±8 versus 12±6 mm Hg, P =0.004). The new subset classification developed by cardiac index and right atrial pressure both on echocardiography predicted cardiovascular events (Log-rank P <0.001). Conclusions: The relationship of VC≥14 mm to adverse outcome and poor hemodynamics showed the clinical relevance and need of a new grading system beyond severe. The new hemodynamic subset classification provides additional prognostic value for cardiovascular events in patients with severe TR.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Libo Wang ◽  
Jonathan Harrison ◽  
Elizabeth Dranow ◽  
Lillian Khor

Introduction: Accurate intravascular volume status assessment is central to heart failure management, but current non-invasive bedside techniques remain a challenge. The visual inspection of jugular venous pulsation (JVP) in a reclined position and measuring its height from the sternal notch has been used as a surrogate for right atrial pressure (RAP). There are no studies on the predictive value of a visible internal jugular vein (IJV) in the upright position (U 2 JVP). Hypothesis: Point of care ultrasound (POCUS) for volume assessment in the upright position is predictive of clinically significant hypervolemia. Methods: Adult patients undergoing right heart catheterization (RHC) were enrolled prior for IJV imaging with point of care ultrasound (POCUS) device, Butterfly iQ™. The IJV and its size in comparison to the carotid artery was identified on ultrasound with the patient upright. Elevated RAP and PCWP was present if the IJV was still visible and not collapsed throughout the entirety of the respiratory cycle. Valsalva was used to confirm the position of a collapsed IJV. Results: 72 participants underwent U 2 JVP assessment on the same day prior to RHC. Average BMI was 31.9 kg/m2. The area under the curve (AUC) of U 2 JVP predicting RAP greater than 10 mmHg and PCWP of 15 mmhg or higher on RHC was 0.78 (95% CI 0.66-0.9, p<0.001), with AUC of 0.86 and 0.74 for non-obese and obese subgroups respectively, p= 0.38. The finding of a visible U 2 JVP in the upright position was 70.6 % sensitive and 85.5 % specific with a negative predictive value of 90.4% for identifying both RAP greater than 10 mmHg and PCWP equal or greater than 15 mmHg. Conclusions: The U 2 JVP is novel and pragmatic bed-side approach to the assessment of clinically significant elevated intra-cardiac pressures in our increasingly obese heart failure population.


2020 ◽  
Vol 9 (22) ◽  
Author(s):  
Mona Lichtblau ◽  
Patrick R. Bader ◽  
Stéphanie Saxer ◽  
Charlotte Berlier ◽  
Esther I. Schwarz ◽  
...  

Background We investigated changes in right atrial pressure (RAP) during exercise and their prognostic significance in patients assessed for pulmonary hypertension (PH). Methods and Results Consecutive right heart catheterization data, including RAP recorded during supine, stepwise cycle exercise in 270 patients evaluated for PH, were analyzed retrospectively and compared among groups of patients with PH (mean pulmonary artery pressure [mPAP] ≥25 mm Hg), exercise‐induced PH (exPH; resting mPAP <25 mm Hg, exercise mPAP >30 mm Hg, and mPAP/cardiac output >3 Wood Units (WU)), and without PH (noPH). We investigated RAP changes during exercise and survival over a median (quartiles) observation period of 3.7 (2.8–5.6) years. In 152 patients with PH, 58 with exPH, and 60 with noPH, median (quartiles) resting RAP was 8 (6–11), 6 (4–8), and 6 (4–8) mm Hg ( P <0.005 for noPH and exPH versus PH). Corresponding peak changes (95% CI) in RAP during exercise were 5 (4–6), 3 (2–4), and −1 (−2 to 0) mm Hg (noPH versus PH P <0.001, noPH versus exPH P =0.027). RAP increase during exercise correlated with mPAP/cardiac output increase ( r =0.528, P <0.001). The risk of death or lung transplantation was higher in patients with exercise‐induced RAP increase (hazard ratio, 4.24; 95% CI, 1.69–10.64; P =0.002) compared with patients with unaltered or decreasing RAP during exercise. Conclusions In patients evaluated for PH, RAP during exercise should not be assumed as constant. RAP increase during exercise, as observed in exPH and PH, reflects hemodynamic impairment and poor prognosis. Therefore, our data suggest that changes in RAP during exercise right heart catheterization are clinically important indexes of the cardiovascular function.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Szymczyk ◽  
L J Paluszkiewicz ◽  
A Costard-Jaeckle ◽  
V Rudolph ◽  
J F Gummert ◽  
...  

Abstract Background Assessing hemodynamics, in particular central venous pressure (CVP) is essential in heart failure diagnostics, leading individual therapy. Hereby, invasive measurement through Swan-Ganz right heart catheterization (RHC) is considered gold standard for patient evaluation, but catheterization implies risks of invasiveness including bleeding, infection, vessel and nerve injury, as well as patient discomfort. Non-invasive methods are warranted, but no alternative technique is validated yet. Two-dimensional echocardiography (2DE) is believed to be uncertain in this approach as vena cava often shows ellipse-shapes. Therefore, this study sought to investigate standardized and breathing corrected three-dimensional inferior vena cava echocardiography (3DE) to directly compare CVP with right heart catheterization. Methods and results We prospectively included 100 consecutive heart failure patients in this study (mean age 53±12 years, body mass index 27±5, New York Heart Association functional class 2.3±0.6, left ventricular ejection fraction 34.1±12.8%, brain natriuretic peptide 658.13±974.03, 76% male), all underwent Swan-Ganz right-heart catheterization and immediately both 2DE and 3DE (Philips EPIQ 7G) of inferior vena cava. From two-dimensional data the diameter of IVC was measured perpendicularly in long and short-axis. From 3DE data a cross-sectional image of IVC was reconstructed for both vertical and horizontal diameters of IVC as well as the area of IVC. Established 2DE images revealed mean vena cava sizes of 15.9±5.9 mm, while standardized cross-sectional breathing corrected 3DE images showed diameters of 19.8±7.8 mm in longitudinal axis and 15.74±7.8 in short axis. RHC mean CVP was 9.00±5.4 mmHg and correlation of CVP and 2DE measurements failed adequate correlation (2DE 95% CI 0.19–1.61; r=0.25; p=0.312). However, 3DE axis ratio assessment correlated well with invasive CVP and showed reproducible results (3DE 95% CI 0.26–0.69; r=0.89; p<0.01). This resulted for a CVP cut point of 10 mmHg in a 89% true negative and 50% true positive correct detection. Conclusions Standardized 3DE correlates well with invasive CVP while established 2DE usual care assessment does not show reliable CVP correlation. 3DE CVP assessment may represent a more feasible and easily applicable method for CVP measurement, including absence for risks of right heart catheterization. Further studies are ongoing to validate these findings in the future.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
A A Valentim Goncalves ◽  
T Pereira-Da-Silva ◽  
R Soares ◽  
R Ilhao Moreira ◽  
L De Sousa ◽  
...  

Abstract Introduction Since the mid-1970s, the diagnosis of acute cellular rejection (ACR) has been made by endomyocardial biopsy (EMB). Whether B-Type Natriuretic Peptide (BNP), transthoracic echocardiography (TTE) parameters and right heart catheterization (RHC) parameters can detect rejection in heart transplant (HT) patients have yielded conflicting results and did not overcome the use of EMB in the first year after HT. Purpose The aim of this study was to evaluate whether BNP, TTE and RHC parameters can be used to detect ACR in the first year after HT. Methods Prospective study of consecutive EMB performed in the first year after HT. Plasma BNP levels, TTE and RHC were performed at the same day. Clinical significant ACR was defined as ≥ 2R, according to the ISHLT 2004 grading. The area under the curve (AUC) was analysed for statistically significant associations to detect ACR. Results From 2017 to 2018, 50 EMB were performed with the following results: 2R - 5 (10.0%); 1R- 29 (58.0%); 0 – 16 (32%). Mean age was 48.7 ± 8.3 years, with mean BNP value of 964.4 ± 1114.7pg/ml. AUC results of BNP and several TTE and RHC parameters for the prediction of ACR are represented in the table. Right atrial pressure (RAP) value (p = 0.027) was the only significantly predictor of ACR, while isovolumic relaxation time measured by TTE revealed a borderline significant trend (p = 0.076). RAP &gt; 10mmHg had a sensitivity of 60.0% and a specificity of 84.4% for detecting ACR. Conclusion Detecting ACR without EMB remains a clinical challenge, but RAP measured by RHC was a significant predictor of ACR in the first year after HT, while BNP values did not correlate with ACR. AUC values PARAMETERS AUC p 95% CI BNP 0.658 0.251 0.405-0.911 Troponin I 0.591 0.507 0.260-0.923 Left ventricular ejection fraction 0.416 0.541 0.218-0.614 E/A 0.480 0.895 0.282-0.678 Deceleration time 0.463 0.463 0.161-0.765 Isovolumic relaxion time 0.745 0.076 0.427-1.000 Cardiac index 0.595 0.488 0.346-0.845 Pulmonary capillary wedge pressure 0.628 0.401 0.329-0.926 Mean pulmonary artery pressure 0.684 0.181 0.511-0.857 Right atrial pressure 0.804 0.027 0.631-0.978 AUC values


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Koichiro Watanabe ◽  
Akiomi YOSHIHISA ◽  
Yu Sato ◽  
Yu Hotsuki ◽  
Yasuhiro Ichijo ◽  
...  

Introduction: We aimed to clarify clinical implications of intrarenal hemodynamics (congestion and hypoperfusion) assessed by intrarenal Doppler ultrasonography (IRD) and their prognostic impacts in patients with heart failure (HF). Methods and Results: We performed IRD and measured interlobar renal artery velocity time integral (VTI) and intrarenal venous flow (IRVF) patterns (monophasic or non-monophasic pattern) to assess intrarenal hypoperfusion and congestion in HF patients (n=341). These patients were categorized based on 1) VTI: high VTI (VTI ≥ 14.0 cm, n=231) or low VTI (VTI < 14.0 cm, n=103); and 2) IRVF: monophasic (n=36) or non-monophasic (n=305) pattern. We performed right-heart catheterization, and examined post-discharge cardiac event rate such as cardiac death and rehospitalization due to worsening HF. Regarding renal perfusion, cardiac index was positively correlated with VTI (R=0.270, P=0.040). Concerning renal congestion, levels of right atrial pressure were higher in monophasic pattern than in non-monophasic pattern (9.0 vs. 7.2 mmHg, P=0.029). Importantly, HF patients with low VTI and a monophasic IRVF pattern (subset 4) had the highest cardiac event rate ( Figure ). In the Cox proportional hazard analysis, the combination of low VTI and a monophasic IRVF pattern was found to be a strong predictor of cardiac events (HR 8.357, 95% CI 3.365-20.752). Conclusion: Intrarenal hypoperfusion and congestion assessed by IRD imaging reflected cardiac output and right atrial pressure, and was useful to risk-stratify HF patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Akiomi Yoshihisa ◽  
Koichiro Watanabe ◽  
Yu Sato ◽  
Shinji Ishibashi ◽  
Mitsuko Matsuda ◽  
...  

AbstractWe aimed to clarify clinical implications of intrarenal hemodynamics assessed by intrarenal Doppler ultrasonography (IRD) and their prognostic impacts in heart failure (HF). We performed a prospective observational study, and examined IRD and measured interlobar renal artery velocity time integral (VTI) and intrarenal venous flow (IRVF) patterns (monophasic or non-monophasic pattern) to assess intrarenal hypoperfusion and congestion in HF patients (n = 341). Seven patients were excluded in VTI analysis due to unclear imaging. The patients were divided into groups based on (A) VTI: high VTI (VTI ≥ 14.0 cm, n = 231) or low VTI (VTI < 14.0 cm, n = 103); and (B) IRVF patterns: monophasic (n = 36) or non-monophasic (n = 305). We compared post-discharge cardiac event rate between the groups, and right-heart catheterization was performed in 166 patients. Cardiac index was lower in low VTI than in high VTI (P = 0.04), and right atrial pressure was higher in monophasic than in non-monophasic (P = 0.03). In the Kaplan–Meier analysis, cardiac event rate was higher in low VTI and monophasic groups (P < 0.01, respectively). In the Cox proportional hazard analysis, the combination of low VTI and a monophasic IRVF pattern was a predictor of cardiac events (P < 0.01). IRD imaging might be associated with cardiac output and right atrial pressure, and prognosis.


2021 ◽  
Vol 77 (18) ◽  
pp. 726
Author(s):  
Samarthkumar Thakkar ◽  
Harsh Patel ◽  
Kirtenkumar Patel ◽  
Ashish Kumar ◽  
Smit Patel ◽  
...  

Author(s):  
Parinita Dherange ◽  
Nelson Telles ◽  
Kalgi Modi

Abstract Background Carcinoid heart disease is present in approximately 20% of the patients with carcinoid syndrome and is associated with poor prognosis. It usually manifests with right-sided valvular involvement including tricuspid insufficiency and pulmonary stenosis. Patent foramen ovale (PFO) is present in approximately 50% of the patients with carcinoid heart disease which is twice higher than the general population. Right-to-left shunting through a PFO can occur either due to higher right atrial pressure than left (pressure-driven) or when the venous flow is directed towards the PFO (flow-driven) in the setting of normal intracardiac pressures. We report a rare case of flow-driven right-to-left atrial shunting via PFO in a patient with carcinoid heart disease. Case summary A 54-year-old male with a metastatic neuroendocrine tumour to liver presented with progressive shortness of breath for 5 months. Patient was found to be hypoxic with oxygen saturation of 78% and examination revealed a holosystolic murmur. Arterial blood gas showed oxygen tension of 43 mmHg. A transthoracic and transoesophageal echocardiogram showed aneurysmal inter-atrial septum with a PFO, severe tricuspid regurgitation directed anteriorly towards the inter-atrial septum leading to a marked right-to-left shunt. Right heart catheterization showed right atrial pressure of 8 mmHg, mean pulmonary artery pressure of 12 mmHg, and normal oxygen saturations in the right atrium, right ventricle, and pulmonary arteries. The patient then underwent closure of the PFO along with tricuspid valve and pulmonary valve replacement at an experienced cardiovascular surgical centre and has been asymptomatic since. Conclusion Right-to-left shunting through a PFO in patients with normal right atrial pressure can be successfully treated with closure of the PFO. Thus, understanding the mechanism of intracardiac shunts is important to accurately diagnose and treat this rare and fatal condition.


Sign in / Sign up

Export Citation Format

Share Document