scholarly journals Electrocardiographic and Electrophysiological Characteristics in Idiopathic Ventricular Arrhythmias Originating From the Papillary Muscles in the Left Ventricle

2010 ◽  
Vol 3 (4) ◽  
pp. 324-331 ◽  
Author(s):  
Takumi Yamada ◽  
Harish Doppalapudi ◽  
H. Thomas McElderry ◽  
Taro Okada ◽  
Yoshimasa Murakami ◽  
...  
2018 ◽  
Vol 35 (1) ◽  
pp. 99-108
Author(s):  
Santiago Rivera ◽  
Leandro Tomas ◽  
Maria de la Paz Ricapito ◽  
Vecchio Nicolas ◽  
Marcelo Reinoso ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Despina Toader ◽  
Alina Paraschiv ◽  
Petrișor Tudorașcu ◽  
Diana Tudorașcu ◽  
Constantin Bataiosu ◽  
...  

Abstract Background Left ventricular noncompaction is a rare cardiomyopathy characterized by a thin, compacted epicardial layer and a noncompacted endocardial layer, with trabeculations and recesses that communicate with the left ventricular cavity. In the advanced stage of the disease, the classical triad of heart failure, ventricular arrhythmia, and systemic embolization is common. Segments involved are the apex and mid inferior and lateral walls. The right ventricular apex may be affected as well. Case presentation A 29-year-old Caucasian male was hospitalized with dyspnea and fatigue at minimal exertion during the last months before admission. He also described a history of edema of the legs and abdominal pain in the last weeks. Physical examination revealed dyspnea, pulmonary rales, cardiomegaly, hepatomegaly, and splenomegaly. Electrocardiography showed sinus rhythm with nonspecific repolarization changes. Twenty-four-hour Holter monitoring identified ventricular tachycardia episodes with right bundle branch block morphology. Transthoracic echocardiography at admission revealed dilated left ventricle with trabeculations located predominantly at the apex but also in the apical and mid portion of lateral and inferior wall; end-systolic ratio of noncompacted to compacted layers > 2; moderate mitral regurgitation; and reduced left ventricular ejection fraction. Between apical trabeculations, multiple thrombi were found. The right ventricle had normal morphology and function. Speckle-tracking echocardiography also revealed systolic left ventricle dysfunction and solid body rotation. Abdominal echocardiography showed hepatomegaly and splenomegaly. Abdominal computed tomography was suggestive for hepatic and renal infarctions. Laboratory tests revealed high levels of N-terminal pro-brain natriuretic peptide and liver enzymes. Cardiac magnetic resonance evaluation at 1 month after discharge confirmed the diagnosis. The patient received anticoagulants, antiarrhythmics, and heart failure treatment. After 2 months, before device implantation, he presented clinical improvement, and echocardiographic evaluation did not detect thrombi in the left ventricle. Coronary angiography was within normal range. A cardioverter defibrillator was implanted for prevention of sudden cardiac death. Conclusions Left ventricular noncompaction is rare cardiomyopathy, but it should always be considered as a possible diagnosis in a patient hospitalized with heart failure, ventricular arrhythmias, and systemic embolic events. Echocardiography and cardiac magnetic resonance are essential imaging tools for diagnosis and follow-up.


2021 ◽  
Vol 8 (31) ◽  
pp. 2865-2869
Author(s):  
Praveen Mulki Shenoy ◽  
Amith Ramos ◽  
Narasimha Pai ◽  
Bharath Shetty ◽  
Aravind Pallipady Rao

BACKGROUND The papillary muscle basal connections have significant clinical implications. Variety of studies done on its morphology and function by various specialists in different departments. A close look on these revealed the interconnections of papillary muscles to one another and to the interventricular septum of both ventricles is related to uncoordinated contractions of papillary muscles, leading to hyper or hypokinesia or prolapse or even its rupture. METHODS Our study done in 25 formalin soaked hearts revealed after the deep and meticulous dissection, reflecting the walls of ventricles laterally the numerous interconnections of papillary muscles at its bases and IVS. Ventricles are opened by inverted ‘L’ shaped incision and its reflected more laterally till all the papillary muscles is visible in one frame after incising the moderator band. The connections were noted, measured, photographed, tabulated, compared with similar studies and analysed with experts with respective fields. RESULTS Almost all the specimens did have the interconnections. Further the post mortem findings of the cardiac related deaths with involvement of papillary muscles suggest damage to such ‘bridges’. The moderator band extensions to the base of right APM, and its extension to the posterior groups is noted in all the specimens. The bridge from the IVS to bases of both the groups of papillary muscles is noted in left ventricle. In90% of specimens the one PPM is found to be loosely connected, more so in left ventricle. CONCLUSIONS We are of a conclusion that such basal interconnections and to the interventricular septum are responsible for rhythmic contractions of papillary muscles of both ventricles. Since the AV valves have to open simultaneously, interconnections becomes mandatory as the impulse has to reach it before it reaches the trabeculae carniae. One of the Posterior papillary muscles is loosely connected to other papillary muscles, may be the reason for its rupture, more so in left ventricle. KEYWORDS Papillary Muscle, Interbasal Connection, Moderator Band, Valvular Prolapse, AV Valves


Author(s):  
Muralidhar Padala ◽  
Ajit P. Yoganathan

The Mitral Valve (MV) is the left atrioventricular valve that controls blood flow between the left atrium and the left ventricle (Fig 1A-B). It has four main components: (i) the mitral annulus — a fibromuscular ring at the base of the left atrium and the ventricle; (ii) two collagenous planar leaflets — anterior and posterior; (iii) web of chordae and (iv) two papillary muscles (PM) that are part of the left ventricle (LV). Normal function of the mitral valve involves a delicate force balance between different components of the valve.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Fatemeh Fatemifar ◽  
Marc D. Feldman ◽  
Geoffrey D. Clarke ◽  
Ender A. Finol ◽  
Hai-Chao Han

Trabeculae carneae are irregular structures that cover the endocardial surfaces of both ventricles and account for a significant portion of human ventricular mass. The role of trabeculae carneae in diastolic and systolic functions of the left ventricle (LV) is not well understood. Thus, the objective of this study was to investigate the functional role of trabeculae carneae in the LV. Finite element (FE) analyses of ventricular functions were conducted for three different models of human LV derived from high-resolution magnetic resonance imaging (MRI). The first model comprised trabeculae carneae and papillary muscles, while the second model had papillary muscles and partial trabeculae carneae, and the third model had a smooth endocardial surface. We customized these patient-specific models with myofiber architecture generated with a rule-based algorithm, diastolic material parameters of Fung strain energy function derived from biaxial tests and adjusted with the empirical Klotz relationship, and myocardial contractility constants optimized for average normal ejection fraction (EF) of the human LV. Results showed that the partial trabeculae cutting model had enlarged end-diastolic volume (EDV), reduced wall stiffness, and even increased end-systolic function, indicating that the absence of trabeculae carneae increased the compliance of the LV during diastole, while maintaining systolic function.


Sign in / Sign up

Export Citation Format

Share Document