scholarly journals Fluorescence Resonance Energy Transfer–Based Sensor Camui Provides New Insight Into Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II Activation in Intact Cardiomyocytes

2011 ◽  
Vol 109 (7) ◽  
pp. 729-738 ◽  
Author(s):  
Jeffrey R. Erickson ◽  
Ruchi Patel ◽  
Amanda Ferguson ◽  
Julie Bossuyt ◽  
Donald M. Bers
2001 ◽  
Vol 6 (4) ◽  
pp. 255-264 ◽  
Author(s):  
Benjamin Bader ◽  
Elke Butt ◽  
Alois Palmetshofer ◽  
Ulrich Walter ◽  
Thomas Jarchau ◽  
...  

Activation of cyclic GMP-dependent protein kinase (cGK) is an important event in the regulation of blood pressure and platelet function. Upstream signals are the generation of nitric oxide (NO) by NO syntheses and the subsequent rise in cyclic GMP levels mediated by NO-dependent guanylyl cyclases (GCs). The identification of new cGK activators by high throughput sreening (HTS) may lead to the development of a novel class of therapeutics for the treatment of cardiovascular diseases. Therefore, a homogeneous, nonradioactive assay for cGK activity was developed using a biotinylated peptide derived from vasodilator-stimulated phosphoprotein (VASP), a well-characterized natural cGK substrate. The phosphorylated peptide could be detected by a VASP-specific monoclonal phosphoserine antibody and a fluorescent detection system consisting of a europium-labeled secondary antibody and allophycocyanin (APC)-labeled streptavidin. Fluorescence resonance energy transfer (FRET) from europium to APC was detected in a time-resolved fashion (TR-FRET). Activation and inhibition constants for known substances determined by this new fluorescence-based assay correlated well with published results obtained by conventional radioactive cGK activity assays. The assay proved to be sensitive, robust, highly specific for cGK, and suitable for HTS in 96- and 384-well formats. This assay is applicable to purified enzymes as well as to complex samples such as human platelet extracts.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Ibrahim Yildiz ◽  
Xinxin Gao ◽  
Thomas K. Harris ◽  
Françisco M. Raymo

In search of viable strategies to identify selective inhibitors of protein kinases, we have designed a binding assay to probe the interactions of human phosphoinositide-dependent protein kinase-1 (PDK1) with potential ligands. Our protocol is based on fluorescence resonance energy transfer (FRET) between semiconductor quantum dots (QDs) and organic dyes. Specifically, we have expressed and purified the catalytic kinase domain of PDK1 with an N-terminal histidine tag [His6-PDK1(ΔPH)]. We have conjugated this construct to CdSe-ZnS core-shell QDs coated with dihydrolipoic acid (DHLA) and tested the response of the resulting assembly to a molecular dyad incorporating an ATP ligand and a BODIPY chromophore. The supramolecular association of the BODIPY-ATP dyad with theHis6-PDK1(ΔPH)-QD assembly encourages the transfer of energy from the QDs to the BODIPY dyes upon excitation. The addition of ATP results in the displacement of BODIPY-ATP from the binding domain of theHis6-PDK1(ΔPH) conjugated to the nanoparticles. The competitive binding, however, does not prevent the energy transfer process. A control experiment with QDs, lacking theHis6-PDK1(ΔPH), indicates that the BODIPY-ATP dyad adsorbs nonspecifically on the surface of the nanoparticles, promoting the transfer of energy from the CdSe core to the adsorbed BODIPY dyes. Thus, the implementation of FRET-based assays to probe the binding domain of PDK1 with luminescent QDs requires the identification of energy acceptors unable to interact nonspecifically with the surface of the nanoparticles.


1998 ◽  
Vol 67 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Wendy W. Waters ◽  
Pat L. Chen ◽  
Newell H. McArthur ◽  
Pete A. Moreno ◽  
Paul G. Harms

Sign in / Sign up

Export Citation Format

Share Document