scholarly journals The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice

Author(s):  
Yoshimitsu Yura ◽  
Emiri Miura-Yura ◽  
Yasufumi Katanasaka ◽  
Kyung-Duk Min ◽  
Nicholas W Chavkin ◽  
...  

Rationale: Cancer therapy can be associated with short- and long-term cardiac dysfunction. Cancer patients often exhibit therapy-related clonal hematopoiesis (t-CH), an aggressive form of clonal hematopoiesis that can result from somatic mutations in genes encoding regulators of the DNA-damage response (DDR) pathway. Gain-of-function mutations in exon 6 the protein phosphatase Mg2+/Mn2+ dependent 1D (PPM1D) gene are the most frequently mutated DDR gene associated with t-CH. Whether t-CH can contribute to cardiac dysfunction is unknown. Objective: We evaluated the causal and mechanistic relationships between Ppm1d-mediated t-CH and non-ischemic heart failure in an experimental system. Methods and Results: To test whether gain-of-function hematopoietic cell mutations in Ppm1d can increase the susceptibility to cardiac stress, we evaluated cardiac dysfunction in a mouse model where clonal hematopoiesis-associated mutations in exon 6 of Ppm1d were produced by CRISPR-Cas9 technology. Mice transplanted with hematopoietic stem cells containing the mutated Ppm1d gene exhibited augmented cardiac remodeling following the continuous infusion of angiotensin II (AngII). Ppm1d-mutant macrophages were impaired in DDR pathway activation and displayed greater DNA damage, higher reactive oxygen species generation and an augmented proinflammatory profile with elevations in IL-1β and IL-18. The administration of an NLRP3 inflammasome inhibitor to mice reversed the cardiac phenotype induced by the Ppm1d-mutated hematopoietic stem cells under conditions of AngII-induced stress. Conclusions: A mouse model of Ppm1d-mediated t-CH was more susceptible to cardiac stress. Mechanistically, disruption of the DDR pathway led to elevations in inflammatory cytokine production, and the NLRP3 inflammasome was shown to be essential for this augmented cardiac stress response. These data indicate that t-CH involving activating mutations in PPM1D can contribute to the cardiac dysfunction observed in cancer survivors, and that anti-inflammatory therapy may have utility in treating this condition.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yoshimitsu Yura ◽  
Emiri Miura-Yura ◽  
Kenneth Walsh

Background: Therapy-related clonal hematopoiesis in cancer patients is typically associated with somatic mutations in hematopoietic cell genes that encode regulators of the DNA-damage response (DDR) pathway. The Protein Phosphatase Mg2+/Mn2+ Dependent 1D ( PPM1D ) gene is the most frequently mutated DDR gene associated with therapy-related clonal hematopoiesis. While epidemiological evidence suggests an association between therapy-related clonal hematopoiesis and cardiovascular disease in cancer patients, causal and mechanistic relationships have never been evaluated in an experimental system. Methods: To test whether hematopoietic cell mutations in PPM1D can increase the susceptibility to cardiac stress, we evaluated cardiac dysfunction in response to angiotensin II infusion in a mouse model where clonal-hematopoiesis-associated mutations in Ppm1d were produced by CRISPR-Cas9 technology. Results: Mice transplanted with hematopoietic stem cells containing clinically relevant mutations in exon 6 of Ppm1d exhibited augmented cardiac remodeling following the continuous infusion of angiotensin II. Ppm1d -mutated macrophages showed impairments in the DDR pathway and had an augmented proinflammatory profile. Mice transplanted with Ppm1d mutated cells exhibited elevated IL-1β in the stressed myocardium, and bone marrow derived macrophages produced more IL-1β in response to LPS stimulation. The administration of an NLRP3 inflammasome inhibitor to mice reversed the cardiac phenotype induced by the Ppm1d -mutated hematopoietic stem cells under conditions of Angiotensin II-induced stress. Conclusions: A mouse model of Ppm1d -mediated clonal hematopoiesis was more susceptible to cardiac stress following of angiotensin II infusion. Mechanistically, disruption of the DDR pathway led to elevations in inflammatory cytokine production, and the NLRP3 inflammasome was shown to be essential for this augmented cardiac stress response. These data indicate that therapy-related clonal hematopoiesis involving mutations in PPM1D could contribute to the cardiac dysfunction observed in cancer survivors.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1210-1210
Author(s):  
Elisabeth Bolton ◽  
Linda Kamp ◽  
Hardik Modi ◽  
Ravi Bhatia ◽  
Steffen Koschmieder ◽  
...  

Abstract Abstract 1210 Background: BCR-ABL1 transforms hematopoietic stem cells to induce chronic myeloid leukemia in chronic phase (CML-CP). Although CML is stem cell-derived, it is a progenitor cell-driven disease. In CML-CP, leukemia stem cells (LSCs) are characterized by elevated BCR-ABL1 expression in comparison to leukemia progenitor cells (LPCs). Increased expression of BCR-ABL1 kinase is also associated with progression from CML-CP to CML-blast phase. Previously we showed that BCR-ABL1 kinase stimulates reactive oxygen species (ROS)-dependent DNA damage resulting in genomic instability in vitro, which was responsible for acquired imatinib-resistance and accumulation of chromosomal aberrations (Nowicki et al., Blood, 2005; Koptyra et al., Blood, 2006; Koptyra et al., Leukemia, 2008). Result: To examine the effects of BCR-ABL1 expression on genomic instability during in vivo leukemogenesis we employed an inducible transgenic mouse model of CML-CP with targeted expression of p210BCR-ABL1 in hematopoietic stem and progenitor cells (Koschmieder et al., Blood, 2005). Mice exhibiting CML-CP-like disease resulting from BCR-ABL1 induction demonstrated splenomegaly, leukocytosis, and Gr1+/CD11b+ myeloid expansion in bone marrow, spleen and peripheral blood, as detected by FACS analysis. BCR-ABL1 mRNA expression was higher in Lin-c-Kit+Sca1+ stem-enriched cells than in Lin-c-Kit+Sca1- progenitor-enriched cells, thus reminiscent of CML-CP (LSCs>LPCs). BCR-ABL1 increased levels of ROS (hydrogen peroxide, hydroxyl radical) and oxidative DNA lesions (8-oxoG) in LSC-enriched Lin-c-Kit+Sca1+ cells. Preliminary data also suggested that quiescent (CFSEmax) Lin-c-Kit+Sca1+ cells from BCR-ABL1-induced mice exhibited greater ROS (superoxide) production than non-induced counter parts. Moreover, higher levels of ROS were detected in BCR-ABL1-positive Lin-c-Kit+Sca1+ stem-enriched population in comparison to BCR-ABL1-positive Lin-c-Kit+Sca1- progenitor population, suggesting a dosage-dependent effect of BCR-ABL1. To confirm that BCR-ABL1 exerts a dosage-dependent effect on ROS-induced oxidative DNA damage, we showed that the levels of ROS, 8-oxoG and DNA double-strand breaks were proportional to BCR-ABL1 kinase expression in murine 32Dc13 and human CD34+ cells. Conclusion: In summary, this mouse model recapitulates the BCR-ABL1 expression profile attributed to stem and progenitor populations in human CML-CP. It also shows that the BCR-ABL1-positive, stem cell-enriched Lin-c-Kit+Sca1+ population displays elevated levels of ROS and oxidative DNA damage in comparison to normal counterparts, which makes it suitable to study the mechanisms of genomic instability in LSCs. Single nucleotide polymorphism (SNP) arrays will shed more light on the genomic instability of this BCR-ABL1-induced transgenic model of CML-CP. Disclosures: Koschmieder: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 445-445 ◽  
Author(s):  
Elisabeth Bolton ◽  
Mirle Schemionek ◽  
Hans-Ulrich Klein ◽  
Linda Kerstiens ◽  
Steffen Koschmieder ◽  
...  

Abstract Abstract 445 For decades, chronic myeloid leukemia (CML) has served not only as a paradigm for understanding the evolution and multi-step process of carcinogenesis but also for studying cancer stem and progenitor cells responsible for the initiation and/or maintenance of the disease. CML is initiated by BCR-ABL1 tyrosine kinase transformation of hematopoietic stem cells into leukemia stem cells (LSCs) to induce CML-chronic phase (CML-CP). The deregulated growth of LSC-derived leukemia progenitor cells (LPCs) leads to manifestation of the disease. It is unclear if LSCs and/or LPCs are able to acquire additional genetic changes that confer resistance to tyrosine kinase inhibitors (TKIs) and induce more aggressive CML blast phase (CML-BP). In addition, the mechanisms and consequences of genomic instability may differ substantially among these cells. For example, the effects of genetic aberrations acquired in quiescent LSCs may be dormant, but if the aberrations induce proliferation or appear in LSCs that are already cycling, they may generate TKI-resistant and/or more malignant clones. Alternatively, genomic instability in LPCs must be accompanied by the acquisition of LSC-like properties to prevent mutations from disappearing before they undergo terminal maturation. Previously, we reported that BCR-ABL1–transformed cell lines accumulate reactive oxygen species (ROS)-induced oxidative DNA damage [8-oxoguanine (8oxoG), double strand breaks (DSBs)] resulting in genomic instability in vitro, which was responsible for acquired imatinib-resistance and accumulation of chromosomal aberrations (Nowicki et al., Blood, 2005; Koptyra et al., Blood, 2006; Koptyra et al., Leukemia, 2008). To determine which populations of CML-CP cells, LSCs and/or LPCs, accumulate genomic instability we employed the SCLtTA/BCR-ABL1 tetracycline-inducible (tet-off) transgenic mouse model of CML-CP with targeted expression of p210BCR-ABL1 in hematopoietic stem and progenitor cells (Koschmieder et al., Blood, 2005). Mice exhibiting CML-CP-like disease resulting from BCR-ABL1 induction demonstrated splenomegaly and Gr1+/CD11b+ myeloid expansion in bone marrow, spleen and peripheral blood. BCR-ABL1 mRNA expression was higher in the Lin−c-Kit+Sca1+ murine leukemia stem cell–enriched population (muLSCs) than in the Lin−c-Kit+Sca1− murine leukemia progenitor cell–enriched population (muLPCs), thus reminiscent of human CML-CP (Lin−CD34+CD38− LSCs > Lin−CD34+CD38+ LPCs). BCR-ABL1 induction increased levels of ROS (hydrogen peroxide, hydroxyl radical) and oxidative DNA damage (8-oxoG, DSBs) in muLSCs, but not in muLPCs. In addition, CFSEmax/eFluor670max quiescent muLSCs displayed more ROS (superoxide, hydrogen peroxide) and oxidative DNA damage (8oxoG, DSBs) than non-induced counterparts. Currently, we are examining genomic instability in the most primitive long-term muLSCs (Lin−c-Kit+Sca1+CD34−Flt3−). Lastly, single nucleotide polymorphism (SNP) arrays detected a variety of genetic aberrations (addition, deletions) in BCR-ABL1–induced Lin− BM cells. Individual mice displayed a great degree of diversity in the intensity of genetic instability accumulating between 31 to 826 aberrations, which recapitulate heterogeneity of sporadic aberrations detected in CML-CP patients. These aberrations include deletions in Trp53 and Ikzf1, and additions in Zfp423 and Idh1 genes, which have been linked to progression from CML-CP to CML-BP. In summary, by using the SCLtTA/BCR-ABL1 inducible transgenic mouse model of CML-CP we showed that muLSCs, but not muLPCs, displayed elevated levels of ROS-induced oxidative DNA damage likely resulting in the accumulation of extensive genetic aberrations. This observation supports the hypothesis that genomic instability in CML-CP originates in LSCs. Current analysis of microarrays may shed some light on the mechanisms leading to enhanced ROS production and accumulation of oxidative DNA damage in muLSCs. Disclosures: Koschmieder: Novartis, Bristol-Myers Squibb: Consultancy.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y.W Liu ◽  
H.Y Chang ◽  
C.H Lee ◽  
W.C Tsai ◽  
P.Y Liu ◽  
...  

Abstract Background and purpose Left ventricular (LV) global peak systolic longitudinal strain (GLS) by speckle-tracking echocardiography is a sensitive modality for the detection of subclinical LV systolic dysfunction and a powerful prognostic predictor. However, the clinical implication of LV GLS in lymphoma patients receiving anti-cancer therapy remains unknown. Methods We prospectively enrolled 74 patients (57.9±17.0 years old, 57% male) with lymphoma who underwent echocardiography prior to chemotherapy, post 3rd and 6th cycle and 1 year after chemotherapy. Cancer therapy-related cardiac dysfunction (CTRCD) is defined as the reduction of absolute GLS value from baseline of ≥15%. All the eligible patients underwent a cardiopulmonary exercise test (CPET) upon completion of 3 cycles of anti-cancer therapy. The primary outcome was defined as a composite of all-cause mortality and heart failure events. Results Among 36 (49%) patients with CTRCD, LV GLS was significantly decreased after the 3rd cycle of chemotherapy (20.1±2.6% vs. 17.5±2.3%, p<0.001). In the multivariable analysis, male sex and anemia (hemoglobin <11 g/dL) were found to be independent risk factors of CTRCD. Objectively, patients with CTRCD had lower minute oxygen consumption/kg (VO2/kg) and lower VO2/kg value at anaerobic threshold in the CPET. The incidence of the primary composite outcome was higher in the CTRCD group than in the non-CTRCD group (hazard ratio 3.21; 95% CI, 1.04–9.97; p=0.03). Conclusion LV GLS is capable of detecting early cardiac dysfunction in lymphoma patients receiving anti-cancer therapy. Patients with CTRCD not only had a reduced exercise capacity but also a higher risk of all-cause mortality and heart failure events. Change of LVEF and GLS after cancer Tx Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): The Ministry of Science and Technology (MOST), Taiwan


2018 ◽  
Vol 64 ◽  
pp. S87
Author(s):  
Michael Milyavsky ◽  
Shahar Biechonski ◽  
Leonid Olender ◽  
Adi Zipin-Roitman ◽  
Muhammad Yassin ◽  
...  

Author(s):  
Wanbo Tang ◽  
Jian He ◽  
Tao Huang ◽  
Zhijie Bai ◽  
Chaojie Wang ◽  
...  

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45– and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45– counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.


Sign in / Sign up

Export Citation Format

Share Document