Abstract 214: (pro) Renin Receptor Stimulates the Expression of Fibrotic Genes in Mouse Collecting Ducts Cells via Wnt/β-catenin Signaling, Independently of Angiotensin II

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Catherina A Cuevas ◽  
Alexis A Gonzalez ◽  
Nivaldo C Inestrosa ◽  
Carlos P Vio ◽  
Minolfa C Prieto

The prorenin receptor (PRR) is upregulated in the kidney by high angiotensin II (Ang II) states such as those that occur with AngII-dependent hypertension and low salt diet. The PRR is an accessory protein of the vacuolar H-ATPase, which facilitates Wnt/β-catenin signaling. The Wnt/β-catenin pathway is involved in fibrosis processes. In the present study, we aimed to determine whether the stimulation of PRR in mouse collecting duct M-1 cells induces fibrotic genes independently of Ang II, and if this effect is mediated by activation of Wnt/β-catenin. Both Ang II (10 -7 M) and human recombinant prorenin (hRPr; 2,5 x 10 -8 M) treatments (8 and 16 hours) increased mRNA and protein levels of fibronectin and collagen I (1.5±0.08 and 1.5 ± 0.1 fold change, respectibely; p<0.05); however, the effects of hRPr were elicited earlier. Likewise, Ang II and hRPr stimulated the Wnt target genes, cyclin D1 and c-myc (cyclin D1: 2±0.2 for both; c-myc: 1.4 ± 0.03 and 1.2± 0.002 fold change for Ang II and hRPr, respectively; p<0.001). Ang II type 1 receptor (AT1R) blockade with candesartan (10 -7 M) completely prevented the Ang II-dependent stimulation but not the effects of hRPr on Wnt signaling genes. Upregulation of fibronectin and collagen I genes by Ang II or hRP at 16 h was prevented by Wnt signaling inhibition with Pyrvinium Pamoate (10 -7 M). The data indicate that in M-1 cells, activation of AT1R and PRR stimulate the synthesis of fibrotic genes via Wnt signaling by independent mechanisms.

2015 ◽  
Vol 308 (4) ◽  
pp. F358-F365 ◽  
Author(s):  
Catherina A. Cuevas ◽  
Alexis A. Gonzalez ◽  
Nibaldo C. Inestrosa ◽  
Carlos P. Vio ◽  
Minolfa C. Prieto

The contribution of angiotensin II (ANG II) to renal and tubular fibrosis has been widely reported. Recent studies have shown that collecting duct cells can undergo mesenchymal transition suggesting that collecting duct cells are involved in interstitial fibrosis. The Wnt/β-catenin signaling pathway plays an essential role in development, organogenesis, and tissue homeostasis; however, the dysregulation of this pathway has been linked to fibrosis. In this study, we investigated whether AT1receptor activation induces the expression of fibronectin and collagen I via the β-catenin pathway in mouse collecting duct cell line M-1. ANG II (10−7M) treatment in M-1 cells increased mRNA, protein levels of fibronectin and collagen I, the β-catenin target genes (cyclin D1 and c-myc), and the myofibroblast phenotype. These effects were prevented by candesartan, an AT1receptor blocker. Inhibition of the β-catenin degradation with pyrvinium pamoate (pyr; 10−9M) prevented the ANG II-induced expression of fibronectin, collagen I, and β-catenin target genes. ANG II treatment promoted the accumulation of β-catenin protein in a time-dependent manner. Because phosphorylation of glycogen synthase kinase-3β (GSK-3β) inhibits β-catenin degradation, we further evaluated the effects of ANG II and ANG II plus pyr on p-ser9-GSK-3β levels. ANG II-dependent upregulation of β-catenin protein levels was correlated with GSK-3β phosphorylation. These effects were prevented by pyr. Our data indicate that in M-1 collecting duct cells, the β-catenin pathway mediates the stimulation of fibronectin and collagen I in response to AT1receptor activation.


2011 ◽  
Vol 300 (2) ◽  
pp. F581-F588 ◽  
Author(s):  
Minolfa C. Prieto ◽  
Dustyn E. Williams ◽  
Liu Liu ◽  
Kimberly L. Kavanagh ◽  
John J. Mullins ◽  
...  

To determine whether in the transgenic rat model [TGR(Cyp1a1Ren2)] with inducible ANG II-dependent malignant hypertension changes in the activation of intrarenal renin-angiotensin system may contribute to the pathogenesis of hypertension, we examined the gene expression of angiotensinogen (AGT) in renal cortical tissues and renin and prorenin receptor [(P)RR] in the collecting duct (CD) of the kidneys from Cyp1a1Ren2 rats ( n = 6) fed a normal diet containing 0.3% indole-3-carbinol (I3C) for 10 days and noninduced rats maintained on a normal diet (0.6% NaCl diet; n = 6). Rats induced with I3C developed malignant hypertension and exhibited alterations in the expression of renin and (P)RR expressed by the CD cells. In the renal medullary tissues of the Cyp1a1Ren2 transgenic rats with malignant hypertension, renin protein levels in CD cells were associated with maintained renin content and lack of suppression of the endogenous Ren1c gene expression. Furthermore, these tissues exhibited increased levels of (P)RR transcript, as well as of the protein levels of the soluble form of this receptor, the s(P)RR. Intriguingly, although previous findings demonstrated that urinary AGT excretion is augmented in Cyp1a1Ren2 transgenic rats with malignant hypertension, in the present study we did not find changes in the gene expression of AGT in renal cortical tissues of these rats. The data suggest that upregulation of renin and the s(P)RR in the CD, especially in the renal medullary tissues of Cyp1a1Ren2 transgenic rats with malignant hypertension, along with the previously demonstrated increased availability of AGT in the urine of these rats, may constitute a leading mechanism to explain elevated formation of kidney ANG II levels in this model of ANG II-dependent hypertension.


2014 ◽  
Vol 307 (8) ◽  
pp. F931-F938 ◽  
Author(s):  
Nirupama Ramkumar ◽  
Deborah Stuart ◽  
Sara Rees ◽  
Alfred Van Hoek ◽  
Curt D. Sigmund ◽  
...  

The physiological and pathophysiological significance of collecting duct (CD)-derived renin, particularly as it relates to blood pressure (BP) regulation, is unknown. To address this question, we generated CD-specific renin knockout (KO) mice and examined BP and renal salt and water excretion. Mice containing loxP-flanked exon 1 of the renin gene were crossed with mice transgenic for aquaporin-2-Cre recombinase to achieve CD-specific renin KO. Compared with controls, CD renin KO mice had 70% lower medullary renin mRNA and 90% lower renin mRNA in microdissected cortical CD. Urinary renin levels were significantly lower in KO mice (45% of control levels) while plasma renin concentration was significantly higher in KO mice (63% higher than controls) during normal-Na intake. While no observable differences were noted in BP between the two groups with varying Na intake, infusion of angiotensin II at 400 ng·kg−1·min−1 resulted in an attenuated hypertensive response in the KO mice (mean arterial pressure 111 ± 4 mmHg in KO vs. 128 ± 3 mmHg in controls). Urinary renin excretion and epithelial Na+ channel (ENaC) remained significantly lower in the KO mice following ANG II infusion compared with controls. Furthermore, membrane-associated ENaC protein levels were significantly lower in KO mice following ANG II infusion. These findings suggest that CD renin modulates BP in ANG II-infused hypertension and these effects are associated with changes in ENaC expression.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Minolfa C Prieto ◽  
Liu Liu ◽  
Alexis A Gonzalez ◽  
Dale M Seth ◽  
L Gabriel Navar

Upregulation of collecting duct (CD)-derived renin (CD renin) in angiotensin II (Ang II)-dependent hypertension may provide a pathway for intratubular Ang II formation by acting on angiotensinogen (AGT) delivered from proximal tubule segments. Recently, a prorenin/renin receptor (PRR) has been cloned and shown to enhance renin and prorenin activation. The soluble form of the PRR (sPRR) is augmented in the renal inner medulla of chronic Ang II-infused rats. The present study was performed to determine if renin is secreted into the lumen by the CD cells in chronic Ang II-infused rats and to establish the functional contribution of sPRR to the enhanced renin activity in distal nephron segments. Accordingly, urinary levels of renin ( uRen ) and Ang II ( uAngII ) were measured by RIA in chronic Ang II-infused male Sprague-Dawley rats [80 ng/min, SC minipumps for 14 d, n=10] and sham-operated rats [n=10]. Systolic blood pressure increased in the Ang II rats by Day 5 and continued to increase throughout the study (Day 13; Ang II: 175±10 vs. sham: 116±2 mmHg; p <0.05). Although plasma renin activity (PRA) was suppressed in the Ang II-infused rats, renal medullary renin content was significantly augmented (12,605±1,343 vs. 7,956±765 ng Ang I/h/mg; p <0.05). The excretion of uAngII was also increased (3,813±431 vs. 2,080±361 fmol/day; p <0.05). In addition, renin and prorenin excretion rates increased progressively and were markedly augmented by Day 13 of Ang II infusion [renin (8.6±1.5 vs. 2.8±0.5x10 -6 Enzyme Units Excreted (EUE) /day; prorenin: 15.8 ± 2.8 vs. 2.6 ± 0.7x10 -3 EUE /day, p <0.05). Renin and prorenin protein levels examined by Western Blot in the urine were similarly increased. Importantly, the incubation of urine samples of Ang II-infused rats with recombinant human prorenin showed increased Ang I formation compared to sham-operated rats. In conclusion, in chronic Ang II-infused rats, the presence of sPRR in the urine reflects augmented enzymatic activity of prorenin secreted by the principal cells of the CD, which increase intratubular Ang II de novo formation in the distal nephron segments thus contributing to enhanced sodium reabsorption during Ang II-dependent hypertension.


2016 ◽  
Vol 310 (4) ◽  
pp. F284-F293 ◽  
Author(s):  
Alexis A. Gonzalez ◽  
Flavia Cifuentes-Araneda ◽  
Cristobal Ibaceta-Gonzalez ◽  
Alex Gonzalez-Vergara ◽  
Leonardo Zamora ◽  
...  

Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10−6 M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Nirupama Ramkumar ◽  
Deborah Stuart ◽  
Elena V Mironova ◽  
Vladislav Bugay ◽  
Mykola Mamenko ◽  
...  

The nephron prorenin receptor (PRR) may modulate blood pressure (BP) and Na+ balance. Since previous models of PRR knockout (KO) mice had early lethality and/or structural defects, we developed an inducible nephron-wide PRR KO using the Pax8/LC1 transgenes. Disruption of nephron PRR at 1 month of age caused no renal histological abnormalities. On a normal Na+ diet, wild-type (WT) and PRR KO mice had similar BP and Na+ excretion. However, PRR KO mice had elevated PRC (KO- 377 ± 77 vs WT- 127 ± 19 ng Ang-I/ml/hr) and a 50% decrease in renal ENaC-α protein. Protein levels of NHE3, NKCC2, NCC and ENaC-β/γ were similar between the two groups. Treatment with mouse prorenin (10 nM for 30 min) increased ENaC channel number by 2-fold, but not open probability, in isolated split-open cortical collecting ducts (CCD) from WT mice; this was prevented by Akt inhibition (A6730) but unaffected by blockade of AT-1 (losartan), ERK1/2 (U0126) or p38 MAPK (SB203580). Addition of prorenin (10 nM) did not change isolated CCD [Ca2+]i as assessed by Fura-2 loading (10 min exposure with readings every 3 sec). On a low Na+ diet, PRR KO mice had increased Na+ excretion (Day 2: KO - 66 ± 11 vs WT- 42 ± 6 μmol/day; Day 6: KO - 39 ± 4 vs ET- 23 ± 4 μmol/day) however, no differences in BP were observed. PRC was elevated in PRR KO mice on a low Na+ diet (KO- 384 ± 40 vs WT-174 ± 12 ng/ Ang-I/ml/hr). PRR KO mice had an attenuated hypertensive response to Angiotensin-II (Ang-II) infusion at 600 ng/Kg/min for 2 weeks (MAP: KO - 117 ± 4 vs WT - 133 ± 4 mm Hg over the course of Ang-II infusion). Urinary Na+ excretion was elevated in Ang-II treated PRR KO mice as compared to WT mice (KO-344 ± 14 vs WT-268 ±30 μmol/day). Taken together, these data indicate that nephron PRR, likely via direct prorenin/renin stimulation of an Akt-dependent pathway, stimulates CCD ENaC activity. Absence of nephron PRR promotes Na+ wasting and reduces the hypertensive response to Ang-II.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tangting Chen ◽  
Miaoling Li ◽  
Xuehui Fan ◽  
Jun Cheng ◽  
Liqun Wang

Differentiation of atrial fibroblasts into myofibroblasts plays a critical role in atrial fibrosis. Sodium tanshinone IIA sulfonate (DS-201), a water-soluble derivative of tanshinone IIA, has been shown to have potent antifibrotic properties. However, the protective effects of DS-201 on angiotensin II- (Ang II-) induced differentiation of atrial fibroblasts into myofibroblasts remain to be elucidated. In this study, human atrial fibroblasts were stimulated with Ang II in the presence or absence of DS-201. Then, α-smooth muscle actin (α-SMA), collagen I, and collagen III expression and reactive oxygen species (ROS) generation were measured. The expression of transforming growth factor-β1 (TGF-β1) and the downstream signaling of TGF-β1, such as phosphorylation of Smad2/3, were also determined. The results demonstrated that DS-201 significantly prevented Ang II-induced human atrial fibroblast migration and decreased Ang II-induced α-SMA, collagen I, and collagen III expression. Furthermore, increased production of ROS and expression of TGF-β1 stimulated by Ang II were also significantly inhibited by DS-201. Consistent with these results, DS-201 significantly inhibited Ang II-evoked Smad2/3 phosphorylation and periostin expression. These results and the experiments involving N-acetyl cysteine (antioxidant) and an anti-TGF-β1 antibody suggest that DS-201 prevent Ang II-induced differentiation of atrial fibroblasts to myofibroblasts, at least in part, through suppressing oxidative stress and inhibiting the activation of TGF-β1 signaling pathway. All of these data indicate the potential utility of DS-201 for the treatment of cardiac fibrosis.


2017 ◽  
Vol 313 (6) ◽  
pp. F1243-F1253 ◽  
Author(s):  
Minolfa C. Prieto ◽  
Virginia Reverte ◽  
Mykola Mamenko ◽  
Marta Kuczeriszka ◽  
Luciana C. Veiras ◽  
...  

Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na+ reabsorption via activation of epithelial Na+ channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na+ handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD (CDPRR-KO). At basal conditions, CDPRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na+ excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg−1·min−1), the increases in systolic BP and diastolic BP were mitigated in CDPRR-KO mice. CDPRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CDPRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments.


2008 ◽  
Vol 105 (40) ◽  
pp. 15417-15422 ◽  
Author(s):  
Jennifer A. Kennell ◽  
Isabelle Gerin ◽  
Ormond A. MacDougald ◽  
Ken M. Cadigan

Wnt signaling plays many important roles in animal development. This evolutionarily conserved signaling pathway is highly regulated at all levels. To identify regulators of the Wnt/Wingless (Wg) pathway, we performed a genetic screen in Drosophila. We identified the microRNA miR-8 as an inhibitor of Wg signaling. Expression of miR-8 potently antagonizes Wg signaling in vivo, in part by directly targeting wntless, a gene required for Wg secretion. In addition, miR-8 inhibits the pathway downstream of the Wg signal by repressing TCF protein levels. Another positive regulator of the pathway, CG32767, is also targeted by miR-8. Our data suggest that miR-8 potently antagonizes the Wg pathway at multiple levels, from secretion of the ligand to transcription of target genes. In addition, mammalian homologues of miR-8 promote adipogenesis of marrow stromal cells by inhibiting Wnt signaling. These findings indicate that miR-8 family members play an evolutionarily conserved role in regulating the Wnt signaling pathway.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Michelle N Sullivan ◽  
Wencheng Li ◽  
Curt D Sigmund ◽  
Yumei Feng

The binding of prorenin to the (pro)renin receptor (PRR) induces non-proteolytic activation of prorenin and generation of angiotensin II (Ang II). PRR activation can also induce Ang II-independent signaling pathways. However, whether Ang II-independent signaling pathways are critical for blood pressure (BP) regulation is not known. To address this question, we created transgenic mice that overexpress the human PRR (hPRR) selectively in neurons (Syn-hPRR). Activated human prorenin (hPRO) cannot cleave endogenous mouse angiotensinogen to generate Ang II. Therefore, administration of hPRO to Syn-hPRR mice can be used to examine Ang II-independent PRR signaling in BP regulation. Intracerebroventricular (ICV) infusion of hPRO increases BP in Syn-hPRR mice (ΔMAP 23 ± 4.6, n = 4) but has no effect on wildtype (WT) mice (ΔMAP 2 ± 0.8, n = 6). The hPRO-induced pressor response in Syn-hPRR mice is unaffected by co-infusion with the Ang II type 1 receptor blocker losartan (ΔMAP 19 ± 5.2, n = 8), suggesting that the response is independent of Ang II. Interestingly, co-infusion with an inhibitor of the reactive oxygen species-generating enzyme NADPH oxidase (NOX), diphenyleneiodonium, nearly abolishes the hPRO-induced pressor response in Syn-hPRR mice (ΔMAP 4.7 ± 1.0, n = 4), indicating that NOX activity is required. Additionally, we find that basal NOX activity is enhanced in the Syn-hPRR hypothalamus relative to WT mice (1.4 fold change). We next examined which NOX isoform is responsible for the hPRO-induced pressor response and enhanced activity. NOX4 mRNA levels are greater (2.7 ± 0.6 fold change), but NOX1 (1.2 ± 0.3 fold change) and NOX2 (1.2 ± 0.3 fold change) mRNA levels are not different, in the hypothalamus of Syn-hPRR compared to WT mice (n = 3). Adenovirus-mediated delivery of NOX2, NOX4, or a scrambled sequence shRNA was ICV injected in Syn-hPRR mice. After 7 days, we found that treatment with NOX2 (ΔMAP 20 ± 5.2) or scrambled (ΔMAP 23 ± 3.2) shRNA had no effect on the hPRO-induced pressor response (n = 5). However, the hPRO-induced increase in BP is attenuated in Syn-hPRR mice injected with NOX4 shRNA (ΔMAP 5.9 ± 2.8). Together, these data indicate that NOX4 mediates the Ang II-independent pressor response to activation of the human (pro)renin receptor in Syn-hPRR mice.


Sign in / Sign up

Export Citation Format

Share Document