Abstract 13: Central Sympathoinhibition Abrogates Skeletal Muscle Fibrosis, Oxidative Stress and Autonomic Dysregulation in a Mouse Model of Muscular Dystrophy

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Rasna Sabharwal ◽  
Mark W Chapleau

Sarcoglycan mutations cause muscular dystrophy in humans. We recently demonstrated that sarcoglycan delta deficient (Sgcd-/-) mice with muscular dystrophy exhibit autonomic dysregulation [Hypertension 2010]. We hypothesized that excessive sympathetic activity contributes to skeletal muscle pathology, decreased locomotor activity and autonomic dysregulation in young (10-12 wks) Sgcd-/- mice. The centrally-acting sympathoinhibitory drug rilmenidine (RIL) was infused into the brain of control C57BL6 and Sgcd-/- mice by osmotic pump for 7-9 wks beginning at 3 wks of age (42 ng/g/hr, ICV). Separate groups of mice were infused with saline vehicle (VEH). Blood pressure (BP), heart rate (HR) and locomotor activity were measured by telemetry. Cardiac (HR responses to propranolol) and vasomotor (BP response to ganglionic blockade) sympathetic tone were increased in VEH-treated Sgcd-/- mice, and normalized by RIL (Table). The RIL-induced sympathoinhibition in Sgcd-/- mice was accompanied by increases in baroreflex sensitivity (BRS, sequence technique), cardiovagal tone (HR response to atropine) and activity, with no change in BP (Table). RIL also decreased oxidative stress (superoxide) by 56% and fibrosis in Sgcd-/- skeletal muscle. RIL did not affect measured variables in control mice (Table). In summary, RIL-induced sympathoinhibition decreased skeletal muscle pathology, increased locomotor activity and improved autonomic regulation in young Sgcd-/- mice. The results implicate increased sympathetic activity in the pathogenesis of muscular dystrophy, and suggest that targeting the brain to inhibit sympathetic activity may provide a novel therapeutic approach.

2018 ◽  
Vol 315 (6) ◽  
pp. F1658-F1669 ◽  
Author(s):  
Matthew K. Abramowitz ◽  
William Paredes ◽  
Kehao Zhang ◽  
Camille R. Brightwell ◽  
Julia N. Newsom ◽  
...  

Muscle dysfunction is an important cause of morbidity among patients with chronic kidney disease (CKD). Although muscle fibrosis is present in a CKD rodent model, its existence in humans and its impact on physical function are currently unknown. We examined isometric leg extension strength and measures of skeletal muscle fibrosis and inflammation in vastus lateralis muscle from CKD patients ( n = 10) and healthy, sedentary controls ( n = 10). Histochemistry and immunohistochemistry were used to assess muscle collagen and macrophage and fibro/adipogenic progenitor (FAP) cell populations, and RT-qPCR was used to assess muscle-specific inflammatory marker expression. Muscle collagen content was significantly greater in CKD compared with control (18.8 ± 2.1 vs. 11.7 ± 0.7% collagen area, P = 0.008), as was staining for collagen I, pro-collagen I, and a novel collagen-hybridizing peptide that binds remodeling collagen. Muscle collagen was inversely associated with leg extension strength in CKD ( r = −0.74, P = 0.01). FAP abundance was increased in CKD, was highly correlated with muscle collagen ( r = 0.84, P < 0.001), and was inversely associated with TNF-α expression ( r = −0.65, P = 0.003). TNF-α, CD68, CCL2, and CCL5 mRNA were significantly lower in CKD than control, despite higher serum TNF-α and IL-6. Immunohistochemistry confirmed fewer CD68+ and CD11b+ macrophages in CKD muscle. In conclusion, skeletal muscle collagen content is increased in humans with CKD and is associated with functional parameters. Muscle fibrosis correlated with increased FAP abundance, which may be due to insufficient macrophage-mediated TNF-α secretion. These data provide a foundation for future research elucidating the mechanisms responsible for this newly identified human muscle pathology.


2016 ◽  
Vol 67 (5) ◽  
pp. 603-611 ◽  
Author(s):  
Toshiyuki Maezawa ◽  
Masayuki Tanaka ◽  
Miho Kanazashi ◽  
Noriaki Maeshige ◽  
Hiroyo Kondo ◽  
...  

2010 ◽  
Vol 5 (5) ◽  
pp. 737-747 ◽  
Author(s):  
Sander Grefte ◽  
Anne Marie Kuijpers-Jagtman ◽  
Ruurd Torensma ◽  
Johannes W Von den Hoff

2018 ◽  
Vol 66 (23) ◽  
pp. 5802-5811 ◽  
Author(s):  
Haiou Pan ◽  
Yan Li ◽  
Haifeng Qian ◽  
Xiguang Qi ◽  
Gangcheng Wu ◽  
...  

2019 ◽  
Vol 28 (16) ◽  
pp. 2686-2695 ◽  
Author(s):  
Pamela Barraza-Flores ◽  
Tatiana M Fontelonga ◽  
Ryan D Wuebbles ◽  
Hailey J Hermann ◽  
Andreia M Nunes ◽  
...  

Abstract Duchenne muscular dystrophy (DMD) is a devastating X-linked disease affecting ~1 in 5000 males. DMD patients exhibit progressive muscle degeneration and weakness, leading to loss of ambulation and premature death from cardiopulmonary failure. We previously reported that mouse Laminin-111 (msLam-111) protein could reduce muscle pathology and improve muscle function in the mdx mouse model for DMD. In this study, we examined the ability of msLam-111 to prevent muscle disease progression in the golden retriever muscular dystrophy (GRMD) dog model of DMD. The msLam-111 protein was injected into the cranial tibial muscle compartment of GRMD dogs and muscle strength and pathology were assessed. The results showed that msLam-111 treatment increased muscle fiber regeneration and repair with improved muscle strength and reduced muscle fibrosis in the GRMD model. Together, these findings support the idea that Laminin-111 could serve as a novel protein therapy for the treatment of DMD.


2019 ◽  
Vol 82 ◽  
pp. 20-37 ◽  
Author(s):  
Daniela L. Rebolledo ◽  
David González ◽  
Jennifer Faundez-Contreras ◽  
Osvaldo Contreras ◽  
Carlos P. Vio ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Vittoria Cenni ◽  
Snezana Kojic ◽  
Cristina Capanni ◽  
Georgine Faulkner ◽  
Giovanna Lattanzi

Ankrd2 (ankyrin repeats containing domain 2) or Arpp (ankyrin repeat, PEST sequence, and proline-rich region) is a member of the muscle ankyrin repeat protein family. Ankrd2 is mostly expressed in skeletal muscle, where it plays an intriguing role in the transcriptional response to stress induced by mechanical stimulation as well as by cellular reactive oxygen species. Our studies in myoblasts from Emery-Dreifuss muscular dystrophy 2, a LMNA-linked disease affecting skeletal and cardiac muscles, demonstrated that Ankrd2 is a lamin A-binding protein and that mutated lamins found in Emery-Dreifuss muscular dystrophy change the dynamics of Ankrd2 nuclear import, thus affecting oxidative stress response. In this review, besides describing the latest advances related to Ankrd2 studies, including novel discoveries on Ankrd2 isoform-specific functions, we report the main findings on the relationship of Ankrd2 with A-type lamins and discuss known and potential mechanisms involving defective Ankrd2-lamin A interplay in the pathogenesis of muscular laminopathies.


Sign in / Sign up

Export Citation Format

Share Document