Abstract 017: Optogenetic Activation of OVLT Neurons Stimulates Water Intake and Produces a Sympathetically-Mediated Increase in Arterial Blood Pressure

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Sarah S Simmonds

The organum vasculosum of the lamina terminalis (OVLT) plays a pivotal role in body fluid homeostasis and arterial blood pressure (ABP) regulation. The OVLT lacks a complete blood-brain-barrier and responds to an array of circulating factors such as NaCl and angiotensin II. Lesion of the anteroventral third ventricular region which includes the OVLT attenuates or reverses several forms of salt-sensitive hypertension. However, there is limited evidence to demonstrate that direct activation of OVLT neurons alters body fluid homeostasis or elevates ABP. To address this question, Male-Sprague-Dawley rats (300-350 g) received an injection of rAAV9-CamKII-hChR2(H134R)-EYFP (10 12 particles/mL, 200nL) into the OVLT. A fiber optic cannula (200μm) was implanted 300μm dorsal to OVLT. Approximately 2-3 week later, optogenetic activation of OVLT neurons (10ms pulse, 50% duty cycle, 30 min) produced frequency-dependent increases in water intake (1Hz: 1.0±0.5mL; 5Hz: 4.2±0.6mL; 10Hz: 8.0±1.8; 20Hz: 10.2±2.1mL, n=4, P<0.05). In separate experiments, optogenetic activation of OVLT neurons produced a frequency-dependent increase in mean ABP (1Hz: 1±1 mmHg; 5Hz: 3±1mmHg; 10Hz: 7±1mmHg; 20Hz: 13±1mmHg, n=4, P<0.05) and heart rate (1Hz: 3±6 bpm; 5Hz: 15±5bpm; 10Hz: 40±12 bpm; 20Hz: 62±14bpm, n=4, P<0.05). Pretreatment with the vasopressin antagonist Manning Compound (10ug/kg, IV) did not affect these responses. However, pretreatment with the ganglionic blocker chlorisondamine (5mg/kg, IV) abolished the pressor (20Hz: 1±1 mmHg, P<0.01) and tachycardic (20Hz: 4±7 bpm, P<0.05) responses to activation of OVLT neurons. Finally, in vivo single-unit recordings demonstrate that optogenetic activation produced frequency-dependent increases in cell discharge of OVLT neurons responsive to either intracarotid injection of hypertonic NaCl (0.3M NaCl, 50μL over 10 s, n=6) or angiotensin II (100ng over 10s, n=3). Collectively, these data provide evidence that direct activation of OVLT neurons stimulates thirst and produces a sympathetically-mediated increase in ABP.

1993 ◽  
Vol 265 (3) ◽  
pp. R591-R595 ◽  
Author(s):  
R. L. Thunhorst ◽  
S. J. Lewis ◽  
A. K. Johnson

Intracerebroventricular (icv) infusion of angiotensin II (ANG II) in rats elicits greater water intake under hypotensive, compared with normotensive, conditions. The present experiments used sinoaortic baroreceptor-denervated (SAD) rats and sham-operated rats to examine if the modulatory effects of arterial blood pressure on water intake in response to icv ANG II are mediated by arterial baroreceptors. Mean arterial blood pressure (MAP) was raised or lowered by intravenous (i.v.) infusions of phenylephrine (1 or 10 micrograms.kg-1 x min-1) or minoxidil (25 micrograms.kg-1 x min-1), respectively. The angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) was infused i.v. to prevent the endogenous formation of ANG II during testing. Urinary excretion of water and solutes was measured throughout. Water intake elicited by icv ANG II was inversely related to changes in MAP. Specifically, rats drank more water in response to icv ANG II when MAP was reduced by minoxidil but drank less water when MAP was elevated by phenylephrine. The influence of changing MAP on the icv ANG II-induced drinking responses was not affected by SAD. These results suggest that the modulatory effects of arterial blood pressure on icv ANG II-induced drinking can occur in the absence of sinoaortic baroreceptor input.


2016 ◽  
Vol 34 (Supplement 1) ◽  
pp. e291
Author(s):  
Seon-Ah Jin ◽  
Hee jung Seo ◽  
Sun Kyeong Kim ◽  
Gyu Yong Song ◽  
Jin-Ok Jeong

2012 ◽  
Vol 303 (9) ◽  
pp. R921-R928 ◽  
Author(s):  
Jason M. Moreau ◽  
Waseem Iqbal ◽  
Jeffrey K. Turner ◽  
Graham F. Wagner ◽  
John Ciriello

Recently, receptors for the calcium-regulating glycoprotein hormone stanniocalcin-1 (STC-1) have been found within subfornical organ (SFO), a central structure involved in the regulation of electrolyte and body fluid homeostasis. However, whether SFO neurons produce STC-1 and how STC-1 may function in fluid homeostasis are not known. Two series of experiments were done in Sprague-Dawley rats to investigate whether STC-1 is expressed within SFO and whether it exerts an effect on water intake. In the first series, experiments were done to determine whether STC-1 was expressed within cells in SFO using immunohistochemistry, and whether protein and gene expression for STC-1 existed in SFO using Western blot and quantitative RT-PCR, respectively. Cells containing STC-1 immunoreactivity were found throughout the rostrocaudal extent of SFO. STC-1 protein expression within SFO was confirmed with Western blot, and SFO was also found to express STC-1 mRNA. In the second series, microinjections (200 nl) of STC-1, ANG II, a combination of the two or the vehicle were made into SFO in conscious, unrestrained rats. Water intake was measured at 0700 for a 1-h period after each injection in animals. Microinjections of STC-1 (17.6 or 176 nM) alone had no effect on water intake compared with controls. However, STC-1 not only attenuated the drinking responses to ANG II for about 30 min, but also decreased the total water intake over the 1-h period. These data suggest that STC-1 within the SFO may act in a paracrine/autocrine manner to modulate the neuronal responses to blood-borne ANG II. These findings also provide the first direct evidence of a physiological role for STC-1 in central regulation of body fluid homeostasis.


1996 ◽  
Vol 27 (2) ◽  
pp. 375-383 ◽  
Author(s):  
Randy W. Braith ◽  
Roger M. Mills ◽  
Christopher S. Wilcox ◽  
Gary L. Davis ◽  
Charles E. Wood

1978 ◽  
Vol 1 (2) ◽  
pp. 125-130 ◽  
Author(s):  
A. Zanoboni ◽  
A. Forni ◽  
W. Zanoboni-Muciaccia ◽  
C. Zanussi

1979 ◽  
Vol 56 (4) ◽  
pp. 325-333 ◽  
Author(s):  
W. B. Campbell ◽  
J. M. Schmitz ◽  
H. D. Itskovitz

1. To investigate the relative roles of angiotensin II (AII) and des-Asp1-angiotensin II (angiotensin III) in the control of blood pressure and aldosterone release, the effects of seven angiotensin agonists on mean arterial blood pressure and serum aldosterone concentrations were compared in normal and sodium-depleted, conscious rats. 2. In normal rats, angiotensin I, α-Asp1-angiotensin II, β-Asp1-angiotensin II, and angiotensin II-amide were equipotent in elevating mean arterial blood pressure. Angiotensin III, des-Asp1-angiotensin I, and poly-O-acetylserine-angiotensin II were 25%, 25%, and 41% as potent as angiotensin II, respectively. After sodium depletion, pressor responses to these angiotensin peptides were reduced approximately 60–80% when compared with control responses. In contrast, pressor responses to noradrenaline were not significantly affected by sodium depletion. 3. Angiotensin II, β-Asp1-angiotensin II, angiotensin II-amide, and angiotensin III were equipotent in increasing serum aldosterone concentrations in normal animals. Angiotensin I was 59% and des-Asp1-angiotensin I only 5% as potent as angiotensin II in their abilities to release aldosterone. After sodium depletion, control serum aldosterone concentrations increased as did the slope of the dose—response curve for each angiotensin peptide. Angiotensin II was the most potent steroidogenic peptide in sodium-depleted rats with angiotensin III and β-Asp1-angiotensin II being 27%, angiotensin I 7%, angiotensin II-amide 3%, and des-Asp1-angiotensin I 1% as potent as angiotensin II in releasing aldosterone. Poly-O-acetylserine-angiotensin II has less steroidogenic effect than angiotensin II or III in both normal and sodium-depleted animals. 4. Infusions of the angiotensin II antagonist, Sar1-Ile8-angiotensin II, and the angiotensin III antagonist, Ile7-angiotensin III, enhanced aldosterone release in normal rats without altering blood pressure. After sodium depletion, Sar1-Ile8-angiotensin II decreased blood pressure without affecting aldosterone release whereas Ile7-angiotensin III diminished aldosterone release without altering blood pressure. 5. These data suggest that angiotensin II, independent of its conversion into angiotensin III, is an important regulator of steroidogenesis in the rat in normal sodium states. In sodium depletion, the octapeptide retains significant steroidogenic activity; however, the contribution of angiotensin III to its steroidogenic effects is increased.


2017 ◽  
pp. 411-423 ◽  
Author(s):  
M. C. DOS SANTOS MOREIRA ◽  
L. M. NAVES ◽  
S. M. MARQUES ◽  
E. F. SILVA ◽  
A. C. S. REBELO ◽  
...  

The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.


Sign in / Sign up

Export Citation Format

Share Document