Abstract P327: Increased Brain iNOS Contributes to Hypertension in Dahl Salt Sensitive Rats

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Michael J Huber ◽  
Fengli Zhu ◽  
Robert A Larson ◽  
Qing-Hui Chen ◽  
Zhiying Shan

The hypothalamic paraventricular nucleus (PVN) is one of the key central nuclei to play an important role in regulating arterial blood pressure (ABP) of salt-sensitive hypertension (SSH). However, the detailed molecular mechanism(s) whereby the PVN increases ABP are not well understood. Here, we tested the hypothesis that high salt (HS) loading increases expression of iNOS in the PVN which contributes to SSH. Six-week-old male Dahl salt sensitive (Dahl S) rats and age matched Sprague Dawley (SD) rats were fed either a HS (4% NaCI) or a normal salt (NS, 0.4% NaCl) diet (n=4~7/group). Mean arterial pressure (MAP) was measured via tail cuff method. Five weeks following diet treatment, HS diet induced hypertension in Dahl S rats (HS: 153±9; vs. NS: 122±2 mmHg, P<0.05), but not in SD rats (HS: 107±3; vs. NS: 107±2 mmHg). Rats were then euthanized and PVN tissues were punched out for real time PCR. The HS diet induced dramatic increases in mRNA levels of iNOS (25-fold), and Fra1 (3.6-fold), a chronic neuronal activation marker, in Dahl S rat but not in SD rats. Next, we investigated the effect of intracerebroventricular (ICV) administration of hypertonic saline on PVN iNOS and Fra1 expression in SD rats. Anesthetized adult male SD rats received ICV infusion of isotonic NaCI (0.15 M, 2μl, as control) or hypertonic NaCI (2M, 2μl) (n=7~8/group). Three hours following ICV infusion, rats were euthanized and PVN mRNA levels of iNOS and Fra1 were assayed. ICV hypertonic saline increased mRNA levels of iNOS (9.5-fold) and Fra1 (4.1-fold). We further tested whether these increases in iNOS and Fra1 expression occurred in neurons. Incubation of hypertonic saline (10 mM NaCI) for 3 hours increased iNOS (6-fold) and Fra1 (2.8-fold) mRNA levels in neuronal cultures from the hypothalamus containing the PVN. Finally, we tested whether increased iNOS activity contributes to ABP elevation in Dahl SSH. In anaesthetized Dahl S rats, bilateral PVN microinjection of the iNOS inhibitor, aminoguanidine (250 pmol) significantly decreased MAP in HS treated animals compared to rats with a NS diet (HS: -13±3; vs. NS: -2±2 mmHg, P<0.05) (n=5/group). These observations suggest that HS intake increases iNOS expression in PVN neurons, which may contribute to the central neural mechanism of Dahl SSH.

2017 ◽  
Vol 313 (6) ◽  
pp. H1075-H1086 ◽  
Author(s):  
Michael J. Huber ◽  
Yuanyuan Fan ◽  
Enshe Jiang ◽  
Fengli Zhu ◽  
Robert A. Larson ◽  
...  

The orexin system is involved in arginine vasopressin (AVP) regulation, and its overactivation has been implicated in hypertension. However, its role in salt-sensitive hypertension (SSHTN) is unknown. Here, we tested the hypothesis that hyperactivity of the orexin system in the paraventricular nucleus (PVN) contributes to SSHTN via enhancing AVP signaling. Eight-week-old male Dahl salt-sensitive (Dahl S) and age- and sex-matched Sprague-Dawley (SD) rats were placed on a high-salt (HS; 8% NaCl) or normal-salt (NS; 0.4% NaCl) diet for 4 wk. HS intake did not alter mean arterial pressure (MAP), PVN mRNA levels of orexin receptor 1 (OX1R), or OX2R but slightly increased PVN AVP mRNA expression in SD rats. HS diet induced significant increases in MAP and PVN mRNA levels of OX1R, OX2R, and AVP in Dahl S rats. Intracerebroventricular infusion of orexin A (0.2 nmol) dramatically increased AVP mRNA levels and immunoreactivity in the PVN of SD rats. Incubation of cultured hypothalamus neurons from newborn SD rats with orexin A increased AVP mRNA expression, which was attenuated by OX1R blockade. In addition, increased cerebrospinal fluid Na+ concentration through intracerebroventricular infusion of NaCl solution (4 µmol) increased PVN OX1R and AVP mRNA levels and immunoreactivity in SD rats. Furthermore, bilateral PVN microinjection of the OX1R antagonist SB-408124 resulted in a greater reduction in MAP in HS intake (−16 ± 5 mmHg) compared with NS-fed (−4 ± 4 mmHg) anesthetized Dahl S rats. These results suggest that elevated PVN OX1R activation may contribute to SSHTN by enhancing AVP signaling. NEW & NOTEWORTHY To our best knowledge, this study is the first to investigate the involvement of the orexin system in salt-sensitive hypertension. Our results suggest that the orexin system may contribute to the Dahl model of salt-sensitive hypertension by enhancing vasopressin signaling in the hypothalamic paraventricular nucleus.


2015 ◽  
Vol 309 (5) ◽  
pp. H880-H887 ◽  
Author(s):  
Michael J. Huber ◽  
Rupsa Basu ◽  
Cassie Cecchettini ◽  
Adolfo E. Cuadra ◽  
Qing-Hui Chen ◽  
...  

Previous studies have indicated that hyperactivity of brain prorenin receptors (PRR) is implicated in neurogenic hypertension. However, the role of brain PRR in regulating arterial blood pressure (ABP) is not well understood. Here, we test the hypothesis that PRR activation in the hypothalamic paraventricular nucleus (PVN) contributes to increased sympathetic nerve activity (SNA). In anaesthetized adult Sprague-Dawley (SD) rats, bilateral PVN microinjection of human prorenin (2 pmol/side) significantly increased splanchnic SNA (SSNA; 71 ± 15%, n = 7). Preinjection of either prorenin handle region peptide, the PRR binding blocker (PRRB), or tiron (2 nmol/side), the scavenger of reactive oxygen species (ROS), significantly attenuated the increase in SSNA (PRRB: 32 ± 5% vs. control, n = 6; tiron: 8 ± 10% vs. control, n = 5; P < 0.05) evoked by prorenin injection. We further investigated the effects of PRR activation on ROS production as well as downstream gene expression using cultured hypothalamus neurons from newborn SD rats. Incubation of brain neurons with human prorenin (100 nM) dramatically enhanced ROS production and induced a time-dependent increase in mRNA levels of inducible nitric oxide synthase (iNOS), NAPDH oxidase 2 subunit cybb, and FOS-like antigen 1 (fosl1), a marker for neuronal activation and a component of transcription factor activator protein-1 (AP-1). The maximum mRNA increase in these genes occurred 6 h following incubation (iNOS: 201-fold; cybb: 2 -fold; Ffosl1: 11-fold). The increases in iNOS and cybb mRNA were not attenuated by the AT1 receptor antagonist losartan but abolished by the AP-1 blocker curcumin. Our results suggest that PVN PRR activation induces sympathoexcitation possibly through stimulation of an ANG II-independent, ROS-AP-1-iNOS signaling pathway.


2015 ◽  
Vol 309 (2) ◽  
pp. R189-R195 ◽  
Author(s):  
Mercedes Perusquía ◽  
Clayton D. Greenway ◽  
Lisa M. Perkins ◽  
John N. Stallone

Testosterone (TES) and other androgens exert a direct vasorelaxing action on the vasculature in vitro that is structurally specific and independent of cytosolic androgen receptor (AR). The effects of intravenous androgen infusions on mean arterial blood pressure (BP) and heart rate (HR) were determined in conscious, unrestrained, chronically catheterized, ganglionically blocked (hexamethonium, HEX; 30 mg/kg ip) male Sprague-Dawley (SD) and testicular-feminized male (Tfm; AR-deficient) rats, 16–20 wk of age. BP and HR were recorded at baseline and with increasing doses of androgens (0.375–6.00 μmol·kg−1·min−1 iv; 10 min/dose). Data are expressed as means ± SE ( n = 5–8 rats/group). In SD rats, baseline BP and HR averaged 103 ± 4 mmHg and 353 ± 12 beats/min (bpm). TES produced a dose-dependent reduction in BP to a low of 87 ± 4 mmHg (Δ16%), while HR was unchanged (354 ± 14 bpm). Neither BP (109 ± 3 mmHg) nor HR (395 ± 13 bpm) were altered by vehicle (10% EtOH in 0.9% saline; 0.15 ml·kg−1·min−1, iv). In Tfm, TES produced a similar reduction in BP (99 ± 3 to 86 ± 3 mmHg, Δ13%); HR was unchanged (369 ± 18 bpm). In SD, 5β-dihydrotestosterone (genomically inactive metabolite) produced a greater reduction in BP than TES (102 ± 2 to 79 ± 2 mmHg, Δ23%); HR was unchanged (361 ± 9). A 20-μg iv bolus of sodium nitroprusside in both SD and Tfm rats reduced BP 30–40 mmHg, while HR was unchanged, confirming blockade by HEX. Pretreatment of SD rats with neuronal nitric oxide synthase (nNOS) inhibitor (S-methyl-thiocitrulline, SMTC; 20 μg·kg−1·min−1 × 30 min) abolished the hypotensive effects of TES infusion on BP (104 ± 2 vs. 101 ± 2 mmHg) and HR (326 ± 11 vs. 324 ± 8 bpm). These data suggest the systemic hypotensive effect of TES and other androgens involves a direct vasodilatory action on the peripheral vasculature which, like the effect observed in isolated arteries, is structurally specific and AR-independent, and involves activation of nNOS.


2003 ◽  
Vol 285 (6) ◽  
pp. F1108-F1117 ◽  
Author(s):  
Jens Titze ◽  
Rainer Lang ◽  
Christoph Ilies ◽  
Karl H. Schwind ◽  
Karl A. Kirsch ◽  
...  

Compared with age-matched men, women are resistant to the hypertensive effects of dietary NaCl; however, after menopause, the incidence of salt-sensitive hypertension is similar in women and men. We recently suggested that osmotically inactive Na+ storage contributes to the development of salt-sensitive hypertension. The connective tissues, including those immediately below the skin that may serve as a reservoir for osmotically inactive Na+ storage, are affected by menopause. We tested the hypothesis that ovariectomy (OVX) might reduce osmotically inactive Na+ storage capacity in the body, particularly in the skin. Male, female-fertile, and female OVX Sprague-Dawley (SD) rats were fed a high (8%)- or low (0.1%)-NaCl diet. The groups received the diet for 4 or 8 wk. At the end of the experiment, subgroups received 0.9% saline infusion and urinary Na+ and K+ excretion was measured. Wet and dry weight (DW), water content in the body and skin, total body Na+ (rTBNa+) and skin Na+ (rSKNa+) content were measured relative to DW by desiccation and dry ashing. There were no gender differences in osmotically inactive Na+ storage in SD rats. All SD rats accumulated Na+ if fed 8% NaCl, but rTBNa+ was lower in OVX rats than in fertile rats on a low ( P < 0.001)- and a high ( P < 0.05)-salt diet. OVX decreased rSKNa+ ( P < 0.01) in the rats. A high-salt diet led to Na+ accumulation (ΔSKNa+) in the skin in all SD rats. Osmotically inactive skin Na+ accumulation was ∼66% of ΔSKNa+ in female and 82% in male-fertile rats, but there was no osmotically inactive Na+ accumulation in OVX rats fed 8% NaCl. We conclude that skin is an osmotically inactive Na+ reservoir that accumulates Na+ when dietary NaCl is excessive. OVX leads to an acquired reduction of osmotically inactive Na+ storage in SD rats that predisposes the rats to volume excess despite a reduced Na+ content relative to body weight.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Kathryn Walsh ◽  
Sarah Mahne ◽  
Jill T Kuwabara ◽  
Richard D Wainford

Aim: Recent controversial studies have proposed that excess norepinephrine (NE) evokes impaired NCC regulation to drive salt-sensitive hypertension. The following studies examine the impact of excess NE on salt-sensitivity and sodium homeostasis in conscious Sprague-Dawley (SD) rats. Methods: Naïve male SD rats, rats receiving a s.c. vehicle infusion (DMSO/Saline, 50:50), or rats receiving a s.c. NE infusion (600ng/min) were fed a 0.4% (NS) or 8% NaCl (HS) diet for 14 days. Additional rats received s.c. hydrochlorothiazide (HCTZ, 4mg/kg/d) in combination with NE (600ng/min) for 14 days on HS. On day 14, MAP, FENa, MAP response to i.v. hexamethonium (30mg/kg), and peak natriuresis to i.v. HCTZ (2mg/kg) infusion were assessed (N=4/gp). A PCR array examining NCC associated genes was performed on kidney cortex samples from each group. Results: NE increased MAP, FENa and vascular sympathetic tone (MAP [mmHg] NS 127±2, NE+NS 151±3, p<0.05). We observed no difference between the naïve and vehicle rats. A HS diet exacerbated NE induced hypertension (MAP [mmHg] HS 129±2, NE+HS 172±4, p<0.05), reduced FENa and prevented a salt stimulated reduction in HCTZ evoked natriuresis. Co-infusion of HCTZ with NE abolished the salt-sensitive component of NE-induced hypertension (MAP [mmHg] NE+HCTZ+HS: 152±3, p<0.05). PCR analysis revealed a significant increase in serine/threonine kinase 39 (0.83-fold increase vs. Naïve SD on NS) mRNA in NE+HS rats. We did not see NE or HS evoked changes in OSR-1, WNK4 or NCC mRNA in any group. Conclusion: The results support previous studies in mice and highlight an opposing interaction between excess NE and high salt intake on sodium homeostasis which exacerbated NE-induced hypertension via a mechanism independent of NE-mediated vascular constriction. Physiologically, our results show impaired NCC function, supporting previous data. In contrast, we failed to detect elevated NCC or WNK4 mRNA in response to NE infusion contradicting data generated in mice and suggesting a key role of altered NCC phosphorylation versus expression in NE treated rats.


2008 ◽  
Vol 295 (6) ◽  
pp. F1696-F1704 ◽  
Author(s):  
Elvira L. Liclican ◽  
John C. McGiff ◽  
John R. Falck ◽  
Mairéad A. Carroll

Adenosine-activated renovascular dilatation in Sprague-Dawley (SD) rats is mediated by stimulating adenosine2A receptors (A2AR), which is linked to epoxyeicosatrienoic acid (EET) synthesis. The A2AR-EET pathway is upregulated by high salt (HS) intake in normotensive SD rats. Because this pathway is antipressor, we examined the role of the A2AR-EET pathway in Dahl salt-sensitive (SS) rats. Male Dahl salt-resistant (SR) and SS rats were fed either HS (8.0% NaCl) or normal salt (NS; 0.4% NaCl) diet for 7 days. On day 8, isolated kidneys were perfused with Krebs-Henseleit buffer containing indomethacin and NG-nitro-l-arginine methyl ester and preconstricted with phenylephrine. Bolus injections of the stable adenosine analog 2-chloroadenosine (2-CA; 0.1–20 μg) elicited dose-dependent dilation in both Dahl SR and SS rats. Dahl SR rats fed a HS diet demonstrated a greater renal vasodilator response to 10 μg of 2-CA, as measured by the reduction in renal perfusion pressure, than that of Dahl SR rats fed a NS diet (−104 ± 6 vs. −77 ± 7 mmHg, respectively; P < 0.05). In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed NS or HS diet (96 ± 6 vs. 104 ± 13 mmHg in NS- and HS-fed rats, respectively). In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A2AR and the cytochrome P-450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake, and this inability of Dahl SS rats to upregulate the A2AR-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.


1999 ◽  
Vol 276 (6) ◽  
pp. H1918-H1926 ◽  
Author(s):  
Piotr Paczwa ◽  
Ewa Szczepańska-Sadowska ◽  
Slawomir Łoń, Ursula Ganten ◽  
Detlev Ganten

In acute experiments, intracranially applied angiotensin II and vasopressin elicit significant cardiovascular effects. The purpose of the present study was to find out whether chronic intrabrain elevation of these peptides, occurring in the renin transgenic TGR(mRen2)27 (TGR) rats, results in an alteration of the cardiovascular control. Mean arterial blood pressure (MAP) and heart rate responses to hypovolemia were examined in hypertensive TGR and normotensive Sprague-Dawley (SD) rats under control conditions and during blockade of central AT1 or V1 receptors. Both groups received cerebroventricular infusions of either 1) cerebrospinal fluid ( series 1), 2) AT1 receptors antagonist (AT1ANT, series 2), or 3) V1 receptors antagonist (V1ANT, series 3). Blockade of AT1 and V1 receptors decreased MAP in TGR but not in SD rats. In SD rats, bleeding elicited a similar decrease of MAP in each series and a transient increase of heart rate in series 3. In TGR, hemorrhage caused bradycardia and decrease of MAP, which was greater than in SD rats. Hemorrhagic hypotension in TGR was abolished by V1ANT and bradycardia by V1ANT or AT1ANT. The results demonstrate remarkable differences in cardiovascular adjustment to hemorrhage in SD and TGR rats and provide evidence for enhanced involvement of central V1 and AT1 receptors in the regulation of blood pressure during hypovolemia in TGR. Central V1 vasopressin receptors play a crucial role in eliciting posthemorrhagic hypotension and bradycardia in this strain.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Richard D Wainford ◽  
Kathryn R Walsh

Aim: We hypothesize that excess norepinephrine (NE) modulates NCC activity via an α1 adrenoceptor pathway to drive the development of salt-sensitive hypertension (HTN). Methods: Male Sprague-Dawley (SD) rats receiving a continuous s.c. saline or NE (600ng/min) infusion and naïve Dahl Salt-Sensitive (DSS) rats were fed a 0.6% (NS) or 8% NaCl (HS) diet for 14 or 21 days respectively (N=4/gp). On day 14 (SD) or 21 (DSS) MAP and NCC activity (peak natriuresis to iv hydrochlorothiazide (HCTZ; 2mg/kg) infusion) and expression (via immunoblotting) was assessed. Additional groups of NE infused SD and DSS rats received a propranolol (9.9mg/kg/day; s.c.) or prazosin (2.5mg/kg/day; oral) and a NS or HS diet for 14 or 21 days. Results: SD rats exhibit HS evoked suppression of NCC expression and activity. In contrast, NE infused SD rats and DSS rats exhibit HTN and fail to suppress NCC expression and activity during HS-intake. β-adrenoceptor antagonism (confirmed pharmacologically) reduced MAP in NE infused SD and DSS rats, but failed to decrease NCC activity or expression. In contrast α1-adreoceptor antagonism (confirmed pharmacologically) abolished the salt-sensitive component of HTN and restored dietary sodium evoked suppression of NCC activity and expression in NE infused SD rats and DSS rats. Conclusion: Our data suggests NE activates α, but not β, adrenoceptors to prevent dietary sodium evoked suppression of NCC activity and the development of salt-sensitive hypertension. The PATHWAY-2 Trial reported a primary role of sodium retention in resistant HTN suggesting α1-adreoceptor antagonism represents a new therapeutic approach for resistant and sympathetically mediated HTN.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Sean D Stocker

Excess dietary salt intake raises plasma and cerebrospinal fluid NaCl concentrations to elevate sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Changes in extracellular NaCl concentrations are sensed by neurons in the organum vasculosum of the lamina terminalis (OVLT) - a circumventricular organ that lacks a complete blood-brain barrier. The purpose of the present study was to investigate the hypothesis that salt-sensitive hypertension was mediated, in part, by an elevated activity of OVLT neurons. Dahl-Salt-Sensitive or Sprague-Dawley rats (8-10 weeks) were fed 0.5% or 4.0% NaCl diets for 3-4 weeks. First, in vivo single-unit recordings demonstrate the discharge of OVLT neurons in Dahl-Salt-Sensitive rats was higher after a 4.0% versus 0.5% NaCl diet (4.1±0.4 Hz vs 1.9±0.3 Hz, n=6 per group, P<0.05). OVLT neuronal discharge of Sprague-Dawley rats was not different after a 4.0% or 0.5% NaCl diet (2.1±0.4 Hz vs 1.7±0.3 Hz, n=6-9 per group, P>0.5). In a second set of experiments, injection of hypertonic NaCl (1.0M NaCl, 20nL) into the OVLT produced significantly greater increases in lumbar SNA (131±6% vs 116±3%, n=4 per group, P<0.05) and mean ABP (14±2 vs 8±2 mmHg, n=4 per group, P<0.05) of Dahl-Salt-Sensitive rats fed 4.0% versus 0.5% NaCl respectively. Sprague-Dawley rats fed 4.0% versus 0.5% NaCl exhibited responses of smaller magnitude for both lumbar SNA (115±4 vs 108±3%, n=4 per group, P<0.05) and mean ABP (9±2 vs 6±2 mmHg, n=4 per group, P<0.05). Interestingly, the duration of the response was much longer in Dahl-Salt-Sensitive versus Sprague-Dawley rats (data not shown). Finally, inhibition of neuronal activity by injection of the GABA agonist muscimol (5mM, 20nL) into the OVLT produced a significantly greater fall in lumbar SNA (-25±4% vs -11±3%, n=4 per group, P<0.05) and mean ABP (-19±4 vs -6±2 mmHg, n=4 per group, P<0.05) of Dahl-Salt-Sensitive rats fed 4.0% versus 0.5% NaCl, respectively. Injection of muscimol into the OVLT of Sprague-Dawley rats did not significantly affect SNA or mean ABP. Collectively, these findings suggest a high salt diet increases the activity of OVLT neurons to elevate SNA and ABP in salt-sensitive hypertension.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Sarah S Simmonds ◽  
Haly L Nation ◽  
Sean D Stocker

Accumulating evidence suggests salt-sensitive hypertension is mediated partly by an increase in cerebrospinal fluid (CSF) NaCl concentration and elevation in sympathetic nerve activity (SNA). Increased NaCl concentration or osmolality is sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). The present study investigated the contribution of these neurons to the SNA and arterial blood pressure (ABP) responses during acute increases in CSF NaCl concentrations. Male Sprague-Dawley rats were anesthetized with Inactin (120mg/kg, IV) and prepared for SNA and ABP recordings. Lateral ventricle infusion of 1M NaCl (5uL over 10 min) increased CSF [Na+] by 5±1 mM and elevated mean ABP (9±1 mmHg), lumbar SNA (125±3%) and adrenal SNA (121±5%) but decreased renal SNA (-9±1%, n=8) and did not alter splanchnic SNA (102±3%). Inhibition of the OVLT with injection of the GABAA agonist muscimol (2.5mM per 20nL, n=5) significantly attenuated the NaCl-induced increase in ABP (2±1 mmHg), lumbar SNA (102±1%), adrenal SNA (103±2%) and decrease in renal SNA (-3±1%). In vivo single-unit recordings demonstrate that lateral ventricular infusion of 1M NaCl (5uL per 10 min) significantly increased the firing rate in 75% (3/4) of OVLT neurons from 1.2±0.4Hz to 5.1±1.2Hz (P<0.05). Furthermore, direct injection of NaCl (100nL over 20s, n=3) into the OVLT produced dose-dependent increases in mean ABP (0.15M: 0±1mmHg; 0.5M: 2±1mmHg; 1.0M: 4±1mmHg; 2.0M: 7±1mmHg) and lumbar SNA (0.15M: 101±2%; 0.5M: 107±1%; 1.0M: 112±3%; 2.0M: 118±4%). Altogether, these findings suggest that increases in CSF NaCl concentrations excite OVLT neurons to elevate lumbar and adrenal SNA and ABP.


Sign in / Sign up

Export Citation Format

Share Document