Abstract 43: Non-Canonical AT1R/b-Arrestin2 Activation In Brain As A Regulator Of Fluid Homeostasis And Blood Pressure

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Natalia M Mathieu ◽  
Pablo Nakagawa ◽  
Daniel Brozoski ◽  
Justin L Grobe ◽  
Curt D Sigmund

The brain renin angiotensin system (RAS) is known for its role in cardiovascular and metabolic regulation. Angiotensin II (Ang II) is the major active product of the RAS, exerting most of its physiological effects through the angiotensin type-1 receptor (AT 1 R). Canonical or G-protein-mediated signaling of the AT 1 R within the brain has long been known to induce a dipsogenic and pressor response upon Ang II stimulation. Non-canonical or β-Arrestin mediated signaling is thought to counterbalance the detrimental effects of canonical signaling. However, the non-canonical AT 1 R/β-Arrestin pathway within the brain is understudied. Therefore, it is hypothesized that β-Arrestin activation contributes to fluid homeostasis and blood pressure (BP) regulation. Global β-Arrestin1 ( Arrb 1) and β-Arrestin2 ( Arrb 2) knockout (KO) mice were employed to evaluate drinking behavior and BP with and without deoxycorticosterone acetate (DOCA). Age- and sex-matched C57BL/6J mice served as controls. Mice were subjected to the two-bottle choice paradigm, in which the animals were presented with two bottles, one containing water and one containing 0.15M saline. In the absence of DOCA, mice lacking β-Arrestin2 had increased saline intake when compared to β-Arrestin1-KO and wildtype (WT=2.2±0.2 and Arrb 1-KO=2±0.4 vs Arrb 2-KO=5±0.7 mL/day; p<0.001; n=13, 11 and 9, respectively). This resulted in a saline preference, which means mice preferred saline over water by more than 50% by volume. In the presence of DOCA, mice lacking β-Arrestin2 had increased saline intake when compared to β-Arrestin1-KO and wildtype (WT=10.6±1.2 and Arrb 1-KO=6.5±0.8 vs Arrb 2-KO=16.6±2 mL/day; p<0.001; n=13, 11 and 9, respectively). However, these mice did not develop a saline preference. Preliminarily, β-Arrestin2-KO mice exhibited higher BP when compared to WT at baseline (WT=108±5 vs Arrb 2-KO=124±6 mmHg; n=2), which was exacerbated in response to DOCA (WT=122±6 vs Arrb 2-KO=140±5 mmHg; n=2). These findings suggest that β-Arrestin2 might counterbalance effects of canonical activation of the AT 1 R through G proteins. Overall, β-Arrestin2 appears to protect against cardiovascular diseases since the genetic ablation of β-Arrestin2 resulted in an increase in saline intake and exacerbated BP.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yusuke Ohya

Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response.


1987 ◽  
Vol 252 (1) ◽  
pp. R73-R77
Author(s):  
B. A. Breuhaus ◽  
J. E. Chimoskey

Conscious adult female sheep chronically prepared with nonocclusive indwelling vascular and cerebroventricular catheters were used to determine whether centrally administered prostaglandin E2 (PGE2) increases blood pressure by activation of the brain renin angiotensin system or whether centrally administered angiotensin II (ANG II) increases blood pressure by stimulating prostaglandin synthesis in the brain. Intracerebroventricular (ivt) ANG II, 50 ng X kg-1 X min-1, increased arterial pressure 23 mmHg (P less than 0.01) 30 min after the start of infusion. Infusion of the ANG II antagonist [Sar1-Thr8]ANG II (sarthran), 1,000 ng X kg-1 X min-1 ivt, had no effect on arterial pressure when given by itself but reduced the ivt ANG II-induced pressor response to 5 mmHg (P less than 0.05) when the two peptides were infused at the same time. Intracerebroventricular infusion of sarthran did not alter the pressor responses to intracarotid (ic) PGE2 or to ivt PGE2. Blood pressure increased 21 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ic by itself, compared with 17 mmHg (P less than 0.01) when PGE2 was given ic at the same time as sarthran was given ivt. Blood pressure increased 14 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ivt by itself, compared with 16 mmHg (P less than 0.01) when PGE2 was given ivt at the same time as sarthran was given ivt. Pretreatment with the cyclooxygenase inhibitors indomethacin, 4 mg/kg sc, or flunixin meglumine, 3 mg/kg iv, did not alter the ivt ANG II-induced pressor response.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) have important role in conversion of Ang II to Ang III. Intravenous APA administration lowers blood pressure in hypertensive rats. In contrast, APA inhibition in the brain lowers blood pressure in hypertensive rats. Therefore APA might have different role on cardiovascular regulation. However, a role of APA and Ang III on cardiovascular regulation especially in the brain has not been fully understood. Our purpose of present study was to investigate a role of APA and Ang III in the brain on cardiovascular regulation in conscious state. Method: 12-13 weeks old Wistar Kyoto rat (WKY) and 12-16 weeks old spontaneously hypertensive rat (SHR) were used. i) APA distribution in the brain was evaluated by immunohistochemistry. Protein expression of APA was evaluated by Western blotting. Enzymatic activity of APA was evaluated using L-glutamic acid γ-(4-nitroanilide) as a substrate. ii) WKY received icv administration of Ang II 25ng/2μL and Ang III 25ng/2μL. We recorded change in mean arterial pressure (MAP) in conscious and unrestraied state and measured induced drinking time. iii) SHR received icv administeration of recombinant APA 400ng/4μL. We recorded change in MAP in conscious and unrestraied state and measured induced drinking time. Result: i) APA was diffusely immunostained in the cells of brain stem including cardiovascular regulatory area such as rostral ventrolateral medulla. Protein expression and APA activity in the brain were similar between WKY (n=3) and SHR (n=3).ii) Icv administration of Ang II increased MAP by 33.8±3.8 mmHg and induced drinking behavior for 405±90 seconds (n=4). Icv administration of Ang III also increased MAP by 24.7±2.4 mmHg and induced drinking behavior for 258±62 seconds (n=3). These vasopressor activity and induced drinking behavior was completely blocked by pretretment of angiotensin receptor type 1 blocker.iii) Icv administration of APA increased MAP by 10.0±1.7 mmHg (n=3). Conclusion: These results suggested that Ang III in the brain increase blood pressure by Angiotensin type 1 receptor dependent mechanism and APA in the brain may involved in blood pressure regulation as a vasopressor enzyme.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) degrades of various sympathomodulatory peptides such as angiotensin (Ang) II, cholecystkinin-8, neurokinin B and kallidin. APA activity is increased in the brain of hypertensive rats. A centrally acting APA inhibitor prodrug is currently under investigation in clinical trial for treatment of hypertension. In previous reports, a role of APA in the brain on cardiovascular regulation was researched focus on only renin-angiotensin system. We previously reported that intracerebroventricular(icv) administration of APA increased blood pressure and that this pressor response was partially blocked by angiotensin receptor blocker. In this study, we evaluated a role of APA on cardiovascular regulation focusing on peptides other than Ang II. Method: Eleven weeks old Wistar Kyoto rats were used. We icv administrated 800 ng/8 μL of APA after pretreatment of following drugs, i) 8μL of artificial cerebrospinal fluid (aCSF) as a control, ii) 80 nmol/8 μL of amastatin which is a non-specific aminopeptidase inhibitor, iii) 1 nmol/8 μL of HOE-140 which is a bradykinin receptor blocker to evaluate the involvement of degradation of kallidin to bradykinin by APA. Result: i) Icv administration of APA after pretreatment of aCSF increased blood pressure rapidly. Blood pressure reached a peak within 1 minute. The elevated blood pressure decreased gradually and reached baseline blood pressure in 10 minutes. A peak pressor response is 25.5±1.4 mmHg (n=5). ii) Icv pretreatment of amastatin or HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 13.1±4.1 mmHg (n=6, p<0.05 vs aCSF). iii) Icv pretreatment of HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 21.2±1.8 mmHg (n=4, p<0.05 vs aCSF). Conclusion: 1) Icv administration of APA increased blood pressure by APA enzymatic activity. 2) Cardiovascular regulation of APA in the brain is due to not only degradation of Ang II to Ang III but also degradation of kallidin to bradykinin. Clinical implication: We think inhibition of APA in the brain may be a unique therapeutic target which affects several cardiovascular peptides in the brain.


1990 ◽  
Vol 258 (5) ◽  
pp. F1237-F1244
Author(s):  
F. N. Hutchison ◽  
V. I. Martin

Albuminuria (UAlbV) can be reduced by converting-enzyme inhibitors (CEI), but the hormonal mechanism responsible for this effect has not previously been defined. Since CEI increase kinin activity as well as reduce angiotensin II (ANG II) activity, experiments were performed to determine the effect of isolated alterations in kinin and ANG II metabolism on UAlbV in rats with passive Heymann pephritis. Phosphoramidon was used to potentiate kinin activity without altering ANG II synthesis. Aprotinin was utilized in combination with the CEI, enalapril, to prevent the increase in kinin activity caused by CEI. UAlbV and the fractional renal clearance of albumin (FCAlb) decreased significantly after either phosphoramidon or enalapril, although only enalapril reduced blood pressure. Glomerular filtration rate (GFR) was not affected by either drug. Phosphoramidon did not affect plasma renin activity (PRA) or the pressor response to angiotensin I (ANG I), indicating that ANG II synthesis was not altered. Aprotinin prevented the reduction in UAlbV and FCAlb produced by CEI but not the hypotension, elevated PRA, or ANG I pressor blockade produced by CEI. Aprotinin alone had no effect on UAlbV, GFR, PRA, or blood pressure. UAlbV can be reduced by increasing kinin activity by a mechanism that is not dependent on suppression of ANG II activity or reduction in GFR or blood pressure. CEI may reduce proteinuria as a result of their action on the kallikrein-kinin system rather than on the renin-angiotensin system.


2010 ◽  
Vol 298 (5) ◽  
pp. R1421-R1427 ◽  
Author(s):  
Norma B. Ojeda ◽  
Thomas P. Royals ◽  
Joshua T. Black ◽  
John Henry Dasinger ◽  
Jeremy M. Johnson ◽  
...  

Placental insufficiency results in intrauterine growth restriction (IUGR) and hypertension in adult male growth-restricted rats. Although renal ANG II and plasma renin activity do not differ between growth-restricted and control rats, blockade of the renin-angiotensin system (RAS) abolishes hypertension in growth-restricted rats, suggesting that the RAS contributes to IUGR-induced hypertension. Moreover, castration abolishes hypertension in growth-restricted rats, indicating an important role for testosterone. Therefore, we hypothesized that enhanced responsiveness to ANG II contributes to hypertension in this model of IUGR and that androgens may play a pivotal role in this enhanced response. Physiological parameters were determined at 16 wk of age in male rats pretreated with enalapril (40 mg·kg−1·day−1) for 1 wk. Baseline blood pressures were similar between growth-restricted (112 ± 3 mmHg) and control (110 ± 2 mmHg) rats; however, an enhanced pressor response to acute ANG II (100 ng·kg−1·min−1 for 30 min) was observed in growth-restricted (160 ± 2 mmHg) vs. control (136 ± 2 mmHg; P < 0.05) rats. Castration abolished the enhanced pressor response to acute ANG II in growth-restricted (130 ± 2 mmHg) rats with no significant effect on blood pressure in controls (130 ± 2 mmHg). Blood pressure was increased to a similar extent above baseline in response to acute phenylephrine (100 μg/min) in control (184 ± 5 mmHg) and growth-restricted (184 ± 8 mmHg) rats, suggesting the enhanced pressor response in growth-restricted rats is ANG II specific. Thus, these results suggest that growth-restricted rats exhibit an enhanced responsiveness to ANG II that is testosterone dependent and indicate that the RAS may serve as an underlying mechanism in mediating hypertension programmed in response to IUGR.


1998 ◽  
Vol 78 (3) ◽  
pp. 583-686 ◽  
Author(s):  
J. T. FITZSIMONS

Fitzsimons, J. T. Angiotensin, Thirst, and Sodium Appetite. Physiol. Rev. 78: 583–686, 1998. — Angiotensin (ANG) II is a powerful and phylogenetically widespread stimulus to thirst and sodium appetite. When it is injected directly into sensitive areas of the brain, it causes an immediate increase in water intake followed by a slower increase in NaCl intake. Drinking is vigorous, highly motivated, and rapidly completed. The amounts of water taken within 15 min or so of injection can exceed what the animal would spontaneously drink in the course of its normal activities over 24 h. The increase in NaCl intake is slower in onset, more persistent, and affected by experience. Increases in circulating ANG II have similar effects on drinking, although these may be partly obscured by accompanying rises in blood pressure. The circumventricular organs, median preoptic nucleus, and tissue surrounding the anteroventral third ventricle in the lamina terminalis (AV3V region) provide the neuroanatomic focus for thirst, sodium appetite, and cardiovascular control, making extensive connections with the hypothalamus, limbic system, and brain stem. The AV3V region is well provided with angiotensinergic nerve endings and angiotensin AT1 receptors, the receptor type responsible for acute responses to ANG II, and it responds vigorously to the dipsogenic action of ANG II. The nucleus tractus solitarius and other structures in the brain stem form part of a negative-feedback system for blood volume control, responding to baroreceptor and volume receptor information from the circulation and sending ascending noradrenergic and other projections to the AV3V region. The subfornical organ, organum vasculosum of the lamina terminalis and area postrema contain ANG II-sensitive receptors that allow circulating ANG II to interact with central nervous structures involved in hypovolemic thirst and sodium appetite and blood pressure control. Angiotensin peptides generated inside the blood-brain barrier may act as conventional neurotransmitters or, in view of the many instances of anatomic separation between sites of production and receptors, they may act as paracrine agents at a distance from their point of release. An attractive speculation is that some are responsible for long-term changes in neuronal organization, especially of sodium appetite. Anatomic mismatches between sites of production and receptors are less evident in limbic and brain stem structures responsible for body fluid homeostasis and blood pressure control. Limbic structures are rich in other neuroactive peptides, some of which have powerful effects on drinking, and they and many of the classical nonpeptide neurotransmitters may interact with ANG II to augment or inhibit drinking behavior. Because ANG II immunoreactivity and binding are so widely distributed in the central nervous system, brain ANG II is unlikely to have a role as circumscribed as that of circulating ANG II. Angiotensin peptides generated from brain precursors may also be involved in functions that have little immediate effect on body fluid homeostasis and blood pressure control, such as cell differentiation, regeneration and remodeling, or learning and memory. Analysis of the mechanisms of increased drinking caused by drugs and experimental procedures that activate the renal renin-angiotensin system, and clinical conditions in which renal renin secretion is increased, have provided evidence that endogenously released renal renin can generate enough circulating ANG II to stimulate drinking. But it is also certain that other mechanisms of thirst and sodium appetite still operate when the effects of circulating ANG II are blocked or absent, although it is not known whether this is also true for angiotensin peptides formed in the brain. Whether ANG II should be regarded primarily as a hormone released in hypovolemia helping to defend the blood volume, a neurotransmitter or paracrine agent with a privileged role in the neural pathways for thirst and sodium appetite of all kinds, a neural organizer especially in sodium appetite, or all of these, remains uncertain. ANG II-induced drinking behavior serves as a model of how other complex behaviors involving neural and peptide inputs might be organized.


1983 ◽  
Vol 244 (2) ◽  
pp. R285-R291 ◽  
Author(s):  
R. E. Lewis ◽  
W. E. Hoffman ◽  
M. I. Phillips

Two neuropeptides, bradykinin (BK) and angiotensin II (ANG II), produce an increase in blood pressure when injected into the brain ventricles. This study is an example of central peptide-peptide interaction and was carried out to determine if BK and ANG II share a common mechanism in the brain to control blood pressure and drinking in rats. Prior injection of saralasin [10 micrograms intraventricularly (ivt)] was found to enhance the pressor response to ivt BK (5 micrograms) by 44%. The same dose of saralasin attenuated the pressor response to ivt ANG II (200 ng) by 55%. 50 ng ANG II and 5 micrograms BK given together ivt did not significantly alter blood pressure or urine conductance compared to 50 ng ANG II alone. Drinking to ivt infusions of ANG II (14 ng/min) was significantly attenuated when combined with BK (0.7 micrograms or 2.8 micrograms/min). Pretreatment with 10 micrograms indomethacin ivt diminished the pressor response to 5 micrograms ivt BK. Prostaglandin E2 (1.4 micrograms/min), but not prostaglandin A2, inhibited drinking to 14 ng/min ivt infusions of ANG II. The results suggest that ANG II and BK share an interrelationship with respect to their central actions: ANG II inhibits the BK pressor response and BK acts to inhibit drinking induced by ANG II. Prostaglandins of the E series may mediate these central actions of bradykinins.


1996 ◽  
Vol 270 (1) ◽  
pp. H275-H280 ◽  
Author(s):  
B. S. Huang ◽  
F. H. Leenen

Intracerebroventricular administration of hypertonic saline, ouabain, brain ouabainlike activity (OLA), or angiotensin II (ANG II) causes sympathoexcitatory and pressor effects in rats. To clarify the possible interaction between increased brain sodium, brain OLA, and the brain renin-angiotensin system (RAS), increases in mean arterial pressure, heart rate (HR), and renal sympathetic nerve activity (RSNA) in response to intracerebroventricular 0.3 M NaCl, ouabain, and ANG II were recorded in conscious Wistar rats before and after intracerebroventricular pretreatment with the angiotensin-receptor (AT1) blocker losartan, antibody Fab fragments (Digibind), or, as control, gamma-globulins. These Fab fragments bind ouabain and brain OLA with high affinity. The arginine vasopressin (AVP) antagonist [d(CH2)5Tyr(Me)]AVP (30 micrograms/ kg) was injected intravenously before each intracerebroventricular injection. Intracerebroventricularly administered 0.3 M NaCl (3.8 mul/min for 10 min), ouabain (0.3 and 0.6 microgram), and ANG II (10 and 30 ng) caused similar pressor responses. However, the extent of HR and RSNA responses to ANG II was smaller than those to 0.3 M NaCl and ouabain. Intracerebroventricular losartan (10 and 20 micrograms) blocked responses to ANG II and 0.3 M NaCl and significantly attenuated the responses to ouabain (pressor response by 50-70%; RSNA and HR by 60-80%). In contrast, intracerebroventricular Fab fragments (66 micrograms) blocked only the responses to 0.3 M NaCl and ouabain and did not affect the responses to ANG II. These results suggest that an acute rise in brain sodium concentration increases brain OLA and the latter exerts its sympathoexcitatory and pressor effects at least partly via activation of the brain RAS.


1984 ◽  
Vol 246 (5) ◽  
pp. R811-R816 ◽  
Author(s):  
R. Casto ◽  
M. I. Phillips

The blood pressure and heart rate responses to microinjection of angiotensin II (ANG II) into the brain stem of urethan-anesthetized rats were studied. Microinjection of ANG II into the area postrema (AP) resulted in significant elevation of blood pressure and significant reduction of heart rate. Microinjection into the region of the nucleus tractus solitarius (NTS) yielded a significant dose-dependent elevation in blood pressure and consistent increases in heart rate. The response to microinjection of ANG II into the region of the NTS was not due to leakage into the peripheral circulation, since intravenous administration of the ANG II antagonist, saralasin, did not attenuate the response. In fact, the cardiovascular response was increased after peripheral ANG II blockade, and the heart rate, which was consistently but not significantly elevated by NTS injection alone, was significantly elevated after saralasin pretreatment. Thermal ablation of the AP did not change the heart rate or the pressor response to microinjection of ANG II into the region of the NTS, indicating that the response was not mediated through the AP.


Sign in / Sign up

Export Citation Format

Share Document