Central angiotensin II and PGE2 act independently to increase blood pressure in conscious sheep

1987 ◽  
Vol 252 (1) ◽  
pp. R73-R77
Author(s):  
B. A. Breuhaus ◽  
J. E. Chimoskey

Conscious adult female sheep chronically prepared with nonocclusive indwelling vascular and cerebroventricular catheters were used to determine whether centrally administered prostaglandin E2 (PGE2) increases blood pressure by activation of the brain renin angiotensin system or whether centrally administered angiotensin II (ANG II) increases blood pressure by stimulating prostaglandin synthesis in the brain. Intracerebroventricular (ivt) ANG II, 50 ng X kg-1 X min-1, increased arterial pressure 23 mmHg (P less than 0.01) 30 min after the start of infusion. Infusion of the ANG II antagonist [Sar1-Thr8]ANG II (sarthran), 1,000 ng X kg-1 X min-1 ivt, had no effect on arterial pressure when given by itself but reduced the ivt ANG II-induced pressor response to 5 mmHg (P less than 0.05) when the two peptides were infused at the same time. Intracerebroventricular infusion of sarthran did not alter the pressor responses to intracarotid (ic) PGE2 or to ivt PGE2. Blood pressure increased 21 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ic by itself, compared with 17 mmHg (P less than 0.01) when PGE2 was given ic at the same time as sarthran was given ivt. Blood pressure increased 14 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ivt by itself, compared with 16 mmHg (P less than 0.01) when PGE2 was given ivt at the same time as sarthran was given ivt. Pretreatment with the cyclooxygenase inhibitors indomethacin, 4 mg/kg sc, or flunixin meglumine, 3 mg/kg iv, did not alter the ivt ANG II-induced pressor response.(ABSTRACT TRUNCATED AT 250 WORDS)

1983 ◽  
Vol 244 (2) ◽  
pp. R285-R291 ◽  
Author(s):  
R. E. Lewis ◽  
W. E. Hoffman ◽  
M. I. Phillips

Two neuropeptides, bradykinin (BK) and angiotensin II (ANG II), produce an increase in blood pressure when injected into the brain ventricles. This study is an example of central peptide-peptide interaction and was carried out to determine if BK and ANG II share a common mechanism in the brain to control blood pressure and drinking in rats. Prior injection of saralasin [10 micrograms intraventricularly (ivt)] was found to enhance the pressor response to ivt BK (5 micrograms) by 44%. The same dose of saralasin attenuated the pressor response to ivt ANG II (200 ng) by 55%. 50 ng ANG II and 5 micrograms BK given together ivt did not significantly alter blood pressure or urine conductance compared to 50 ng ANG II alone. Drinking to ivt infusions of ANG II (14 ng/min) was significantly attenuated when combined with BK (0.7 micrograms or 2.8 micrograms/min). Pretreatment with 10 micrograms indomethacin ivt diminished the pressor response to 5 micrograms ivt BK. Prostaglandin E2 (1.4 micrograms/min), but not prostaglandin A2, inhibited drinking to 14 ng/min ivt infusions of ANG II. The results suggest that ANG II and BK share an interrelationship with respect to their central actions: ANG II inhibits the BK pressor response and BK acts to inhibit drinking induced by ANG II. Prostaglandins of the E series may mediate these central actions of bradykinins.


1984 ◽  
Vol 246 (5) ◽  
pp. R811-R816 ◽  
Author(s):  
R. Casto ◽  
M. I. Phillips

The blood pressure and heart rate responses to microinjection of angiotensin II (ANG II) into the brain stem of urethan-anesthetized rats were studied. Microinjection of ANG II into the area postrema (AP) resulted in significant elevation of blood pressure and significant reduction of heart rate. Microinjection into the region of the nucleus tractus solitarius (NTS) yielded a significant dose-dependent elevation in blood pressure and consistent increases in heart rate. The response to microinjection of ANG II into the region of the NTS was not due to leakage into the peripheral circulation, since intravenous administration of the ANG II antagonist, saralasin, did not attenuate the response. In fact, the cardiovascular response was increased after peripheral ANG II blockade, and the heart rate, which was consistently but not significantly elevated by NTS injection alone, was significantly elevated after saralasin pretreatment. Thermal ablation of the AP did not change the heart rate or the pressor response to microinjection of ANG II into the region of the NTS, indicating that the response was not mediated through the AP.


1992 ◽  
Vol 262 (6) ◽  
pp. R1137-R1144 ◽  
Author(s):  
K. P. Conrad ◽  
S. L. Whittemore

NG-monomethyl-L-arginine (NMA) and nitroarginine have been reported to be competitive inhibitors of the production of endothelium-derived relaxing factor (EDRF). In chronically instrumented conscious rats, we observed that the pressor response of NMA was attenuated by pretreatment with L-arginine but not by pretreatment with D-arginine, phentolamine, or meclofenamate. Inhibitors of the renin-angiotensin system, captopril and [Sar1,Ile5,Thr8]angiotensin II, did not significantly affect the pressor response of NMA, either. Ten to fifteen minutes after bolus administration of 7-15 mg/kg NMA, when baseline blood pressure was virtually restored, the pressor responses of angiotensin II (ANG II), norepinephrine, and arginine vasopressin were significantly potentiated by approximately 30-40% compared with control values. This potentiation was prevented by pretreatment with L- but not D-arginine. It was also observed in conscious rats subjected to ganglionic blockade. Likewise, the pressor responses of ANG II were significantly increased during infusions of 2 and 5 micrograms/min nitroarginine methyl ester (NAME), dosages that raised baseline blood pressure by 6 +/- 2 and 15 +/- 3 mmHg, respectively. During administration of 5 and 50 micrograms/min NAME, hypotensive responses of methacholine and histamine were only modestly attenuated compared with the responses recorded during infusions of phenylephrine, which raised resting blood pressure to comparable levels. Finally, in freshly isolated rat aorta, NMA inhibited basal and stimulated production of guanosine 3',5'-cyclic monophosphate in a manner comparable to reduced hemoglobin, a known inhibitor of EDRF.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Natalia M Mathieu ◽  
Pablo Nakagawa ◽  
Daniel Brozoski ◽  
Justin L Grobe ◽  
Curt D Sigmund

The brain renin angiotensin system (RAS) is known for its role in cardiovascular and metabolic regulation. Angiotensin II (Ang II) is the major active product of the RAS, exerting most of its physiological effects through the angiotensin type-1 receptor (AT 1 R). Canonical or G-protein-mediated signaling of the AT 1 R within the brain has long been known to induce a dipsogenic and pressor response upon Ang II stimulation. Non-canonical or β-Arrestin mediated signaling is thought to counterbalance the detrimental effects of canonical signaling. However, the non-canonical AT 1 R/β-Arrestin pathway within the brain is understudied. Therefore, it is hypothesized that β-Arrestin activation contributes to fluid homeostasis and blood pressure (BP) regulation. Global β-Arrestin1 ( Arrb 1) and β-Arrestin2 ( Arrb 2) knockout (KO) mice were employed to evaluate drinking behavior and BP with and without deoxycorticosterone acetate (DOCA). Age- and sex-matched C57BL/6J mice served as controls. Mice were subjected to the two-bottle choice paradigm, in which the animals were presented with two bottles, one containing water and one containing 0.15M saline. In the absence of DOCA, mice lacking β-Arrestin2 had increased saline intake when compared to β-Arrestin1-KO and wildtype (WT=2.2±0.2 and Arrb 1-KO=2±0.4 vs Arrb 2-KO=5±0.7 mL/day; p<0.001; n=13, 11 and 9, respectively). This resulted in a saline preference, which means mice preferred saline over water by more than 50% by volume. In the presence of DOCA, mice lacking β-Arrestin2 had increased saline intake when compared to β-Arrestin1-KO and wildtype (WT=10.6±1.2 and Arrb 1-KO=6.5±0.8 vs Arrb 2-KO=16.6±2 mL/day; p<0.001; n=13, 11 and 9, respectively). However, these mice did not develop a saline preference. Preliminarily, β-Arrestin2-KO mice exhibited higher BP when compared to WT at baseline (WT=108±5 vs Arrb 2-KO=124±6 mmHg; n=2), which was exacerbated in response to DOCA (WT=122±6 vs Arrb 2-KO=140±5 mmHg; n=2). These findings suggest that β-Arrestin2 might counterbalance effects of canonical activation of the AT 1 R through G proteins. Overall, β-Arrestin2 appears to protect against cardiovascular diseases since the genetic ablation of β-Arrestin2 resulted in an increase in saline intake and exacerbated BP.


1981 ◽  
Vol 241 (3) ◽  
pp. H381-H388 ◽  
Author(s):  
A. J. Brown ◽  
J. Casals-Stenzel ◽  
S. Gofford ◽  
A. F. Lever ◽  
J. J. Morton

Female Wistar rats were infused intravenously with 5% dextrose for 3 days, then with angiotensin II (ANG II) in 5% dextrose at 20 ng . kg-1 . min-1 for 7 days, and finally with dextrose for 2.5 days. ANG II raised mean arterial pressure (MAP) gradually; by the 7th day it was 49.7 mmHg higher than during the dextrose control period in the same rats. Control rats were infused with dextrose for 12.5 days; MAP did not change. Plasma ANG II concentration was measured during infusion. In hypertensive rats on the 7th day of ANG II infusion, it was six times higher than in control rats infused with dextrose. Changes of blood pressure and plasma ANG II concentration were compared in further rats infused with much larger doses of ANG II. Rats receiving 270 ng . kg-1 . min-1 for 1 h had an almost maximal direct pressor response, MAP rising 45.3 mmHg and plasma ANG II rising 32-fold compared with controls. Thus, infusion of ANG II at low dose without direct pressor effect gradually raises blood pressure to a level similar to the maximum direct pressor effect produced by larger doses of ANG II. Sodium balance and food and water intakes were also measured and did not change during prolonged infusion of ANG II at 20 ng . kg-1 . min-1. Thus, the slow pressure effect of ANG II develops at a lower and more nearly physiological plasma concentration of the peptide than do the direct pressor effect and the effects on drinking, eating, and urinary sodium excretion.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) degrades of various sympathomodulatory peptides such as angiotensin (Ang) II, cholecystkinin-8, neurokinin B and kallidin. APA activity is increased in the brain of hypertensive rats. A centrally acting APA inhibitor prodrug is currently under investigation in clinical trial for treatment of hypertension. In previous reports, a role of APA in the brain on cardiovascular regulation was researched focus on only renin-angiotensin system. We previously reported that intracerebroventricular(icv) administration of APA increased blood pressure and that this pressor response was partially blocked by angiotensin receptor blocker. In this study, we evaluated a role of APA on cardiovascular regulation focusing on peptides other than Ang II. Method: Eleven weeks old Wistar Kyoto rats were used. We icv administrated 800 ng/8 μL of APA after pretreatment of following drugs, i) 8μL of artificial cerebrospinal fluid (aCSF) as a control, ii) 80 nmol/8 μL of amastatin which is a non-specific aminopeptidase inhibitor, iii) 1 nmol/8 μL of HOE-140 which is a bradykinin receptor blocker to evaluate the involvement of degradation of kallidin to bradykinin by APA. Result: i) Icv administration of APA after pretreatment of aCSF increased blood pressure rapidly. Blood pressure reached a peak within 1 minute. The elevated blood pressure decreased gradually and reached baseline blood pressure in 10 minutes. A peak pressor response is 25.5±1.4 mmHg (n=5). ii) Icv pretreatment of amastatin or HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 13.1±4.1 mmHg (n=6, p<0.05 vs aCSF). iii) Icv pretreatment of HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 21.2±1.8 mmHg (n=4, p<0.05 vs aCSF). Conclusion: 1) Icv administration of APA increased blood pressure by APA enzymatic activity. 2) Cardiovascular regulation of APA in the brain is due to not only degradation of Ang II to Ang III but also degradation of kallidin to bradykinin. Clinical implication: We think inhibition of APA in the brain may be a unique therapeutic target which affects several cardiovascular peptides in the brain.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1514-1525
Author(s):  
Anyun Ma ◽  
Lie Gao ◽  
Ahmed M. Wafi ◽  
Li Yu ◽  
Tara Rudebush ◽  
...  

We investigated the mechanism by which ACE2 (angiotensin-converting enzyme 2) overexpression alters neurohumoral outflow and central oxidative stress. Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is a master antioxidant transcription factor that regulates cytoprotective and antioxidant genes. We hypothesized that upregulation of central ACE2 inhibits the pressor response to Ang II (angiotensin II) by reducing reactive oxygen species through a Nrf2/antioxidant enzyme–mediated mechanism in the rostral ventrolateral medulla. Synapsin human Angiotensin Converting Enzyme 2 positive (SynhACE2 +/+ ) mice and their littermate controls synhACE2 −/− were used to evaluate the consequence of intracerebroventricular infusion of Ang II. In control mice, Ang II infusion evoked a significant increase in blood pressure and norepinephrine excretion, along with polydipsia and polyuria. The pressor effect of central Ang II was completely blocked in synhACE2 +/+ mice. Polydipsia, norepinephrine excretion, and markers of oxidative stress in response to central Ang II were also reduced in synhACE2 +/+ mice. The MasR (Mas receptor) agonist Ang 1–7 and blocker A779 had no effects on blood pressure. synhACE2 +/+ mice showed enhanced expression of Nrf2 in the rostral ventrolateral medulla which was blunted following Ang II infusion. Ang II evoked nuclear translocation of Nrf2 in cultured Neuro 2A (N2A) cells. In synhACE2 −/− mice, the central Ang II pressor response was attenuated by simultaneous intracerebroventricular infusion of the Nrf2 activator sulforaphane; blood pressure was enhanced by knockdown of Nrf2 in the rostral ventrolateral medulla in Nrf2 floxed (Nrf2 f/f ) mice. These data suggest that the hypertensive effects of intracerebroventricular Ang II are attenuated by selective overexpression of brain synhACE2 and may be mediated by Nrf2-upregulated antioxidant enzymes in the rostral ventrolateral medulla.


2012 ◽  
Vol 302 (1) ◽  
pp. R159-R165 ◽  
Author(s):  
Amanda K. Sampson ◽  
Lucinda M. Hilliard ◽  
Karen M. Moritz ◽  
Merlin C. Thomas ◽  
Chris Tikellis ◽  
...  

The complex role of the renin-angiotensin-system (RAS) in arterial pressure regulation has been well documented. Recently, we demonstrated that chronic low-dose angiotensin II (ANG II) infusion decreases arterial pressure in female rats via an AT2R-mediated mechanism. Estrogen can differentially regulate components of the RAS and is known to influence arterial pressure regulation. We hypothesized that AT2R-mediated depressor effects evident in females were estrogen dependent and thus would be abolished by ovariectomy and restored by estrogen replacement. Female Sprague-Dawley rats underwent ovariectomy or sham surgery and were treated with 17β-estradiol or placebo. Mean arterial pressure (MAP) was measured via telemetry in response to a 2-wk infusion of ANG II (50 ng·kg−1·min−1 sc) or saline. MAP significantly decreased in females treated with ANG II (−10 ± 2 mmHg), a response that was abolished by ovariectomy (+4 ± 2 mmHg) and restored with estrogen replacement (−6 ± 2 mmHg). Cardiac and renal gene expression of components of the RAS was differentially regulated by estrogen, such that overall, estrogen shifted the balance of the RAS toward the vasodilatory axis. In conclusion, estrogen-dependent mechanisms offset the vasopressor actions of ANG II by enhancing RAS vasodilator pathways in females. This highlights the potential for these vasodilator pathways as therapeutic targets, particularly in women.


1998 ◽  
Vol 275 (2) ◽  
pp. R548-R554 ◽  
Author(s):  
Michael L. Mathai ◽  
Mark D. Evered ◽  
Michael J. McKinley

This study investigated the effect of intracerebroventricular administration of the angiotensin AT1 receptor antagonist losartan on the natriuresis, pressor effect, and arginine vasopressin (AVP) secretion caused by intracerebroventricular infusion of either ANG II, hypertonic saline, or carbachol. Losartan (1 mg/h) or artificial cerebrospinal fluid (CSF) was infused into the lateral ventricle before, during, and after infusions of either ANG II at 10 μg/h for 1 h, 0.75 mol/l NaCl at 50 μl/min for 20 min, or carbachol at 1.66 μg/min for 15 min. Intracerebroventricular infusions of ANG II, 0.75 mol/l NaCl, or carbachol caused increases in renal Na+ and K+ excretion, arterial pressure, and plasma AVP levels. Increases in arterial pressure, Na+ excretion, and plasma AVP concentration ([AVP]) in response to intracerebroventricular ANG II or intracerebroventricular 0.75 mol/l NaCl were either abolished or attenuated by intracerebroventricular infusion of losartan but not by intracerebroventricular infusion of artificial CSF or intravenous losartan. Intracerebroventricular losartan did not reduce the increase in plasma [AVP] or arterial pressure in response to intracerebroventricular carbachol, but it did attenuate the natriuretic response to intracerebroventricular carbachol. We conclude that an intracerebroventricular dose of losartan (1 mg/h) that inhibits responses to intracerebroventricular ANG II also inhibits vasopressin secretion, natriuresis, and the pressor response to intracerebroventricular hypertonic saline. These results suggest that common neural pathways are involved in the responses induced by intracerebroventricular administration of ANG II and intracerebroventricular hypertonic NaCl. We propose that intracerebroventricular infusion of hypertonic saline activates angiotensinergic pathways in the central nervous system subserving the regulation of fluid and electrolyte balance and arterial pressure in sheep.


Sign in / Sign up

Export Citation Format

Share Document