Transcriptomic Response in the Heart and Kidney to Different Types of Antihypertensive Drug Administration

Author(s):  
Fumihiko Takeuchi ◽  
Yi-Qiang Liang ◽  
Masato Isono ◽  
Mia Yang Ang ◽  
Kotaro Mori ◽  
...  

Certain classes of antihypertensive drug may exert specific, blood pressure (BP)-independent protective effects on end-organ damages such as left ventricular hypertrophy, although the overall evidence has not been definitive in clinical trials. To unravel antihypertensive drug-induced gene expression changes that are potentially related to the amelioration of end-organ damages, we performed in vivo phenotypic evaluation and transcriptomic analysis on the heart and the kidney, with administration of antihypertensive drugs to two inbred strains (ie, hypertensive and normotensive) of rats. We chose 6 antihypertensive classes: enalapril (angiotensin-converting enzyme inhibitor), candesartan (angiotensin receptor blocker), hydrochlorothiazide (diuretics), amlodipine (calcium-channel blocker), carvedilol (vasodilating β-blocker), and hydralazine. In the tested rat strains, 4 of 6 drugs, including 2 renin-angiotensin system inhibitors, were effective for BP lowering, whereas the remaining 2 drugs were not. Besides BP lowering, there appeared to be some interdrug heterogeneity in phenotypic changes, such as suppressed body weight gain and body weight-adjusted heart weight reduction. For the transcriptomic response, a considerable number of genes showed prominent mRNA expression changes either in a BP-dependent or BP-independent manner with substantial diversity between the target organs. Noticeable changes of mRNA expression were induced particularly by renin-angiotensin system blockade, for example, for genes in the natriuretic peptide system ( Nppb and Corin ) in the heart and for those in the renin-angiotensin system/kallikrein-kinin system ( Ren and rat Klk1 paralogs) and those related to calcium ion binding ( Calb1 and Slc8a1 ) in the kidney. The research resources constructed here will help corroborate occasionally inconclusive evidence in clinical settings.

1996 ◽  
Vol 81 (2) ◽  
pp. 816-821 ◽  
Author(s):  
D. L. Geenen ◽  
A. Malhotra ◽  
P. M. Buttrick

The renin-angiotensin system has been implicated in the hypertrophic adaptation of the heart to exogenous pathological loads, such as hypertension and aortic stenosis; however, the role of this hormonal system in the cardiac adaptations to physiological loads, such as chronic exercise conditioning, has not been established. We therefore studied the effect of angiotensin receptor 1 (AT1) blockade on the chronic cardiac responses of rats subjected to an 8-wk swimming program. Compared with matched sedentary controls, untreated swimmers increased their left ventricular weights by 13%, and swimmers treated with the AT1 antagonist L-158809 increased their left ventricular weights by 11% (both P < 0.05 vs. sedentary controls). The incorporation of labeled amino acids into the heart at the time of death was unchanged in all groups, and therefore the increase in heart weight in both swim-conditioned groups appeared to reflect a decrease in the rate of protein degradation in the heart. Hearts from both swim-conditioned groups manifested an increase in the V1-predominant myosin isoform pattern but not an increase in atrial natriuretic factor mRNA expression or protein kinase C translocation. The fact that these patterns of adaptation are preserved in exercised conditioned animals treated with an AT1 antagonist suggests that the chronic hypertrophic response of the heart to physiological loads is not influenced by the renin-angiotensin system.


2003 ◽  
Vol 285 (6) ◽  
pp. R1473-R1480 ◽  
Author(s):  
L. W. Hu ◽  
L. A. Benvenuti ◽  
E. A. Liberti ◽  
M. S. Carneiro-Ramos ◽  
M. L. M. Barreto-Chaves

The present study assessed the possible involvement of the renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) in thyroxine (T4)-induced cardiac hypertrophy. Hemodynamic parameters, heart weight (HW), ratio of HW to body weight (HW/BW), and myocyte width were evaluated in absence of thyroid hormone (hypothyroidism) and after T4 administration. Male Wistar rats were used. Some were subjected to thyroidectomies, whereas hyperthyroidism was induced in others via daily intraperitoneal injection of T4 (25 or 100 μg · 100 g BW-1 · day-1) for 7 days. In some cases, T4 administration was combined with the angiotensin I-converting enzyme inhibitor enalapril (Ena), with the angiotensin type 1 (AT1) receptor blocker losartan (Los) or with the β-adrenergic blocker propanolol (Prop). Hemodynamics and morphology were then evaluated. Systolic blood pressure (SBP) was not altered by administration of either T4 alone or T4 in combination with the specific inhibitors. However, SBP decreased significantly in hypothyroid rats. An increased heart rate was seen after administration of either T4 alone or T4 in combination with either Los or Ena. Although the higher dose of T4 significantly increased HW, HW/BW increased in both T4-treated groups. Ena and Prop inhibited the increase in HW or HW/BW in hyperthyroid rats. Morphologically, both T4 dose levels significantly increased myocyte width, an occurrence prevented by RAS or SNS blockers. There was a good correlation between changes in HW/BW and myocyte width. These results indicate that T4-induced cardiac hypertrophy is associated with both the SNS and the RAS.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Boitard-Joanne ◽  
Y Marc ◽  
M Keck ◽  
N Mougenot ◽  
O Agbulut ◽  
...  

Abstract Introduction Brain renin-angiotensin system (RAS) hyperactivity has been implicated in sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial infarction (MI). Brain angiotensin III, generated by aminopeptidase A (APA), is one of the main effector peptides of the brain RAS in the control of cardiac function. Purpose We hypothesized that orally administered firibastat (previously named RB150), an orally central acting APA inhibitor prodrug, would attenuate heart failure (HF) development after MI in mice, by blocking brain RAS hyperactivity. Methods Two days after MI induced by the left anterior descending artery ligation, adult male CD1 mice were randomized to three groups, for four to eight weeks of oral treatment with vehicle (MI+vehicle), firibastat (150 mg/kg; MI+firibastat) or the angiotensin I converting enzyme inhibitor enalapril (1 mg/kg; MI+enalapril) as a positive control. Results From one to four weeks post-MI, brain APA hyperactivity occurred, contributing to brain RAS hyperactivity. Firibastat treatment during four weeks after MI normalized brain APA hyperactivity, with a return to the control values measured in the sham group. Four and six weeks after MI, MI+firibastat mice had a significant lower LV end-diastolic pressure, LV end-systolic diameter and volume, and a higher LV ejection fraction than MI+vehicle mice. Moreover, the mRNA levels of biomarkers of HF (Myh7, Bnp and Anf) were significantly lower following firibastat treatment. For a similar infarct size, the peri-infarct area of MI+firibastat mice displayed lower levels of mRNA for markers of fibrosis such Ctgf and collagen types I and III than MI+vehicle mice. Conclusions Chronic oral firibastat administration after MI in mice normalizes brain APA hyperactivity, thereby normalizing brain RAS hyperactivity, whilst preventing cardiac dysfunction and attenuating cardiac hypertrophy and fibrosis. Acknowledgement/Funding INSERM, College de France, ANR LabCom, and Quantum Genomics


2001 ◽  
Vol 281 (6) ◽  
pp. H2410-H2416 ◽  
Author(s):  
Frans H. H. Leenen ◽  
Roselyn White ◽  
Baoxue Yuan

To assess the possible contribution of the circulatory and cardiac renin-angiotensin system (RAS) to the cardiac hypertrophy induced by a β-agonist, the present study evaluated the effects of isoproterenol, alone or combined with an angiotensin I-converting enzyme inhibitor or AT1 receptor blocker, on plasma and LV renin activity, ANG I, and ANG II, as well as left ventricular (LV) and right ventricular (RV) weight. Male Wistar rats received isoproterenol by osmotic minipump subcutaneously and quinapril or losartan once daily by gavage. Plasma and LV ANGs were measured by radioimmunoassay after separation by HPLC. Isoproterenol alone decreased blood pressure, more markedly when combined with losartan or quinapril. Isoproterenol significantly increased LV and RV weight and total collagen. Neither losartan nor quinapril inhibited the increases in LV or RV weight. Losartan prevented the increase in RV collagen but enhanced the increase in LV collagen. Isoproterenol increased plasma renin, ANG I, and ANG II three- to fourfold. Isoproterenol combined with losartan or quinapril, caused marked further increases except for a significant decrease in plasma ANG II with quinapril. Isoproterenol alone did not increase LV ANG II and, combined with losartan or quinapril, actually decreased LV ANG II. These results indicate that isoproterenol-induced cardiac hypertrophy is associated with clear increases in plasma ANG II, but not in LV ANG II. Both losartan and quinapril lower LV ANG II below control levels, but do not prevent the isoproterenol-induced cardiac hypertrophy. These findings do not support a role for the circulatory or cardiac RAS in the cardiac trophic responses to β-receptor stimulation.


1996 ◽  
Vol 270 (6) ◽  
pp. H2177-H2183 ◽  
Author(s):  
P. M. Kang ◽  
A. Nakouzi ◽  
T. Simpson ◽  
J. Scheuer ◽  
P. M. Buttrick

Myocardial stretch and the renin-angiotensin system have been implicated in the development of cardiac hypertrophy through the activation of specific target genes. However, the relative importance of these putative hypertrophic stimuli has not been established in vivo. We used an isolated isovolumic heart preparation in which coronary perfusion pressure (CPP), left ventricular end-diastolic pressure, and pharmacological therapy can be independently manipulated to study this relationship. High CPP (140 cmH2O), which increased coronary flow (8.99 vs. 17.6 ml/min) and left ventricular systolic pressure (50 vs. 91 mmHg), increased steady state c-fos mRNA expression 2.3-fold (all P < 0.01 vs. low CPP). In contrast, increased left ventricular end-diastolic pressure (25 mmHg) and/or infusion of angiotensin II in the absence of increased CPP was not associated with an increase in c-fos mRNA expression. The change in c-fos gene expression seen with increased CPP was largely reversed by treatment with an angiotensin type 1 (AT1) receptor blocker. Hearts perfused at high CPP demonstrated increased translocation/activation of protein kinase C-epsilon relative to controls. None of the hearts studied were ischemic during perfusion. Thus, in the perfused adult rat heart, dynamic, but not static, stretch activates the early response gene, c-fos, and may involve the endogenous reninangiotensin system and protein kinase C.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Julia M Carlson ◽  
John J Gildea ◽  
Helen E McGrath ◽  
Robin A Felder

SLC4A5 is a sodium-bicarbonate co-transporter involved with sodium homeostasis. Based on unpublished data, two SLC4A5 single nucleotide polymorphisms (SNPs rs1017783 and rs7571842) have been highly associated with an individual’s salt-sensitivity status. Since the renal proximal tubule (RPT) regulates a large percentage of renal sodium transport, we investigated whether SLC4A5 was present in this nephron segment. Using confocal immunofluorescence microscopy, we found expression of SLC4A5 in human RPT cell plasma membrane and intracellular membrane vesicles. We then examined the physiologic implications of the SLC4A5 SNPs in human RPT cells. Using immunoblotting and RT-PCR, we found no significant differences in basal SLC4A5 expression in RPT cells between individuals that are homozygous variant at both SNPs and individuals that are wild-type (WT) for both alleles. Stimulation of the dopaminergic system with 1μM fenoldopam, or the renin-angiotensin system with 10 nM angiotensin II or 10 nM angiotensin III (n=18 per treatment) over 3 and 24 hours did not significantly alter SLC4A5 protein or 24 hour mRNA expression. These data indicate that SLC4A5 is not directly regulated by either the renal dopaminergic or renin-angiotensin system. However, 24 hour stimulation with the sodium ionophore monensin (MON, 1μM) significantly increased overall mRNA expression of SLC4A5 by 182±0.098% over vehicle (VEH) (ΔCq VEH=0.283±0.035; n=18, p<0.001). There was also a significant increase in SLC4A5 mRNA in three cell lines homozygous variant for both alleles compared to three WT cell lines following MON treatment at both 3 hours (138±0.10%; ΔCq WT MON = 0.5±0.052; n=9, p<0.05) and 24 hours (161±0.11%; ΔCq WT MON = 0.39±0.066; n=9, p<0.02). Three but not 24 hour stimulation with MON also significantly increased overall expression of SLC4A5 protein (137±0.00041%; RFU VEH=0.0030±0.00022; n=18, p<0.01). MON, by allowing salt to enter a cell, may be activating an enhancer that leads to increased transcription of SLC4A5 mRNA that is more effective in homozygous variant cell lines. These novel observations demonstrate that SNPs located in a non-promoter DNA intron are associated with enhanced promoter activity that is regulated by altered intracellular sodium.


Sign in / Sign up

Export Citation Format

Share Document