Abstract 848: The Iron Chelator Deferiprone Clears Hemorrhagic Byproducts Following Acute Myocardial Infarction in a Swine Model of Ischemia-Reperfusion

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Jill J Weyers ◽  
Reuben Thomas ◽  
Xiuilng Qi ◽  
Jennifer Barry ◽  
Vraj Rabadia ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Xia Yin ◽  
Yang Zheng ◽  
Xujie Zhai ◽  
Xin Zhao ◽  
Lu Cai

Ischemic preconditioning (IPC) or postconditioning (Ipost) is proved to efficiently prevent ischemia/reperfusion injuries. Mortality of diabetic patients with acute myocardial infarction was found to be 2–6 folds higher than that of non-diabetic patients with same myocardial infarction, which may be in part due to diabetic inhibition of IPC- and Ipost-mediated protective mechanisms. Both IPC- and Ipost-mediated myocardial protection is predominantly mediated by stimulating PI3K/Akt and associated GSK-3β pathway while diabetes-mediated pathogenic effects are found to be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore, this review briefly introduced the general features of IPC- and Ipost-mediated myocardial protection and the general pathogenic effects of diabetes on the myocardium. We have collected experimental evidence that indicates the diabetic inhibition of IPC- and Ipost-mediated myocardial protection. Increasing evidence implies that diabetic inhibition of IPC- and Ipost-mediated myocardial protection may be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore any strategy to activate PI3K/Akt and associated GSK-3β pathway to release the diabetic inhibition of both IPC and Ipost-mediated myocardial protection may provide the protective effect against ischemia/reperfusion injuries.


2012 ◽  
Vol 15 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Isamu Yoshitake ◽  
Mitsumasa Hata ◽  
Akira Sezai ◽  
Satoshi Unosawa ◽  
Shinji Wakui ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Lichan Tao ◽  
Yihua Bei ◽  
Haifeng Zhang ◽  
Yanli Zhou ◽  
Jingfa Jiang ◽  
...  

Acute myocardial infarction (AMI) represents a major cause of morbidity and mortality worldwide. Exercise has been proved to reduce myocardial ischemia-reperfusion (I/R) injury. However it remains unclear whether, and (if so) how, exercise could protect against AMI. Methods: Mice were trained using a 3-week swimming protocol, and then subjected to left coronary artery (LCA) ligation, and finally sacrificed 24 h after AMI. Results: Exercise training reduces myocardial infarct size and abolishes AMI-induced autophagy and apoptosis. MI leads to a shift from fatty acid to glucose metabolism in the myocardium with a downregulation of PPAR-α and PPAR-γ. Also, AMI induces an adaptive increase of mitochondrial DNA replication and transcription in the acute phase of MI, accompanied by an activation of PGC-1α signaling. Exercise abolishes the derangement of myocardial glucose and lipid metabolism and further enhances the adaptive increase of mitochondrial biogenesis. Conclusion: Exercise training protects against AMI-induced acute cardiac injury through improving myocardial energy metabolism and enhancing the early adaptive change of mitochondrial biogenesis.


Circulation ◽  
2019 ◽  
Vol 140 (9) ◽  
pp. 751-764 ◽  
Author(s):  
Yulin Li ◽  
Boya Chen ◽  
Xinying Yang ◽  
Congcong Zhang ◽  
Yao Jiao ◽  
...  

Background: Myocardial ischemia-reperfusion (MI/R) injury is a significant clinical problem without effective therapy. Unbiased omics approaches may reveal key MI/R mediators to initiate MI/R injury. Methods: We used a dynamic transcriptome analysis of mouse heart exposed to various MI/R periods to identify S100a8/a9 as an early mediator. Using loss/gain-of-function approaches to understand the role of S100a8/a9 in MI/R injury, we explored the mechanisms through transcriptome and functional experiment. Dynamic serum S100a8/a9 levels were measured in patients with acute myocardial infarction before and after percutaneous coronary intervention. Patients were prospectively followed for the occurrence of major adverse cardiovascular events. Results: S100a8/a9 was identified as the most significantly upregulated gene during the early reperfusion stage. Knockout of S100a9 markedly decreased cardiomyocyte death and improved heart function, whereas hematopoietic overexpression of S100a9 exacerbated MI/R injury. Transcriptome/functional studies revealed that S100a8/a9 caused mitochondrial respiratory dysfunction in cardiomyocytes. Mechanistically, S100a8/a9 downregulated NDUF gene expression with subsequent mitochondrial complex I inhibition via Toll-like receptor 4/Erk–mediated Pparg coactivator 1 alpha/nuclear respiratory factor 1 signaling suppression. Administration of S100a9 neutralizing antibody significantly reduced MI/R injury and improved cardiac function. Finally, we demonstrated that serum S100a8/a9 levels were significantly increased 1 day after percutaneous coronary intervention in patients with acute myocardial infarction, and elevated S100a8/a9 levels were associated with the incidence of major adverse cardiovascular events. Conclusions: Our study identified S100a8/a9 as a master regulator causing cardiomyocyte death in the early stage of MI/R injury via the suppression of mitochondrial function. Targeting S100a8/a9-intiated signaling may represent a novel therapeutic intervention against MI/R injury. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT03752515


2018 ◽  
Vol 243 (11) ◽  
pp. 895-910 ◽  
Author(s):  
Ravi K Chilukoti ◽  
Josefine Lendeckel ◽  
Katrin Darm ◽  
Alicja Bukowska ◽  
Andreas Goette ◽  
...  

Dronedarone improves microvascular flow during atrial fibrillation and reduces the infarct size in acute models of myocardial infarction. However, dronedarone might be harmful in patients with recent decompensated heart failure and increases mortality in patients with permanent atrial fibrillation. A pathophysiological explanation for these discrepant data is lacking. This study investigated the effects of dronedarone on gene and protein expression in the infarcted area and border zone in pigs subjected to anterior ischemia/reperfusion myocardial infarction. The ischemia/reperfusion myocardial infarction was induced in 16 pigs. Eight pigs were treated with dronedarone for 28 days after myocardial infarction, the remaining pigs served as control. Microarray-based transcriptome profiling and 2D-DIGE-based proteome analysis were used to assess the effects of dronedarone on left ventricular gene expression in healthy (LV), infarcted (MI), and border zone tissue. Selected targets were validated by RT-qPCR or immunoblot analyses, with special emphasize given to the transcriptome/proteome overlap. Combined “omics” analysis was performed to identify most significant disease and function charts affected by dronedarone and to establish an integrated network. The levels of 879 (BZ) or 7 (MI) transcripts and 51 (LV) or 15 (BZ) proteins were significantly altered by dronedarone, pointing to a substantial efficacy of dronedarone in the border zone. Transcriptome and proteome data indicate that dronedarone influences post-infarction remodeling processes and identify matricellular proteins as major targets of dronedarone in this setting. This finding is fully supported by the disease and function charts as well as by the integrated network established by combined “omics”. Dronedarone therapy alters myocardial gene expression after acute myocardial infarction with pronounced effects in the border zone. Dronedarone promotes infarct healing via regulation of periostin and might contribute to the limitation of its expansion as well as cardiac rupture. Thus, there are no experimental hints that dronedarone per se has direct harmful effects after MI in ventricular tissue. Impact statement Dronedarone reduced the infarct size in models of acute myocardial infarction (MI). Here, we show that dronedarone attenuates many of the substantial changes in gene expression that are provoked by acute myocardial infarction (AMI) in pigs. Dronedarone modifies the expression of gene panels related to post-infarction cardiac healing and remodeling processes and, most remarkably, this occurs predominantly in the infarction border-zone and much less so in the vital or infarcted myocardium. Combined “omics” identified matricellular proteins and ECM as major dronedarone-regulated targets and emphasizes their relevance for Disease Charts and Tox Function Charts associated with tissue remodeling and cellular movement. The results demonstrate dronedarone’s capability of regulating cardiac repair and remodeling processes specifically in the infarction border zone and identify underlying mechanisms and pathways that might be employed in future therapeutic strategies to improve long-term cardiac tissue function and stability.


Sign in / Sign up

Export Citation Format

Share Document