Processing Words with Emotional Connotation: An fMRI Study of Time Course and Laterality in Rostral Frontal and Retrosplenial Cortices

2004 ◽  
Vol 16 (2) ◽  
pp. 167-177 ◽  
Author(s):  
M. Allison Cato ◽  
Bruce Crosson ◽  
Didem Gökçay ◽  
David Soltysik ◽  
Christina Wierenga ◽  
...  

Responses of rostral frontal and retrosplenial cortices to the emotional significance of words were measured using functional magnetic resonance imaging (fMRI). Twenty-six strongly righthanded participants engaged in a language task that alternated between silent word generation to categories with positive, negative, or neutral emotional connotation and a baseline task of silent repetition of emotionally neutral words. Activation uniquely associated with word generation to categories with positive or negative versus neutral emotional connotation occurred bilaterally in rostral frontal and retrosplenial cortices. Furthermore, the time courses of activity in these areas differed, indicating that they subserve different functions in processing the emotional connotation of words. Namely, the retrosplenial cortex appears to be involved in evaluating the emotional salience of information from external sources, whereas the rostral frontal cortex also plays a role in internal generation of words with emotional connotation. In both areas, activity associated with positive or negative emotional connotation was more extensive in the left hemisphere than the right, regardless of valence, presumably due to the language demands of word generation. The present findings localize specific areas in the brain that are involved in processing emotional meaning of words within the brain's distributed semantic system. In addition, time course analysis reveals diverging mechanisms in anterior and posterior cortical areas during processing of words with emotional significance.

2011 ◽  
Vol 23 (5) ◽  
pp. 1027-1041 ◽  
Author(s):  
Yoshiya Moriguchi ◽  
Alyson Negreira ◽  
Mariann Weierich ◽  
Rebecca Dautoff ◽  
Bradford C. Dickerson ◽  
...  

Emerging evidence indicates that stimulus novelty is affectively potent and reliably engages the amygdala and other portions of the affective workspace in the brain. Using fMRI, we examined whether novel stimuli remain affectively salient across the lifespan, and therefore, whether novelty processing—a potentially survival-relevant function—is preserved with aging. Nineteen young and 22 older healthy adults were scanned during observing novel and familiar affective pictures while estimating their own subjectively experienced aroused levels. We investigated age-related difference of magnitude of activation, hemodynamic time course, and functional connectivity of BOLD responses in the amygdala. Although there were no age-related differences in the peak response of the amygdala to novelty, older individuals showed a narrower, sharper (i.e., “peakier”) hemodynamic time course in response to novel stimuli, as well as decreased connectivity between the left amygdala and the affective areas including orbito-frontal regions. These findings have relevance for understanding age-related differences in memory and affect regulation.


2011 ◽  
Vol 23 (11) ◽  
pp. 3620-3636 ◽  
Author(s):  
David B. Miele ◽  
Tor D. Wager ◽  
Jason P. Mitchell ◽  
Janet Metcalfe

Judgments of agency refer to people's self-reflective assessments concerning their own control: their assessments of the extent to which they themselves are responsible for an action. These self-reflective metacognitive judgments can be distinguished from action monitoring, which involves the detection of the divergence (or lack of divergence) between observed states and expected states. Presumably, people form judgments of agency by metacognitively reflecting on the output of their action monitoring and then consciously inferring the extent to which they caused the action in question. Although a number of previous imaging studies have been directed at action monitoring, none have assessed judgments of agency as a potentially separate process. The present fMRI study used an agency paradigm that not only allowed us to examine the brain activity associated with action monitoring but that also enabled us to investigate those regions associated with metacognition of agency. Regarding action monitoring, we found that being “out of control” during the task (i.e., detection of a discrepancy between observed and expected states) was associated with increased brain activity in the right TPJ, whereas being “in control” was associated with increased activity in the pre-SMA, rostral cingulate zone, and dorsal striatum (regions linked to self-initiated action). In contrast, when participants made self-reflective metacognitive judgments about the extent of their own control (i.e., judgments of agency) compared with when they made judgments that were not about control (i.e., judgments of performance), increased activity was observed in the anterior PFC, a region associated with self-reflective processing. These results indicate that action monitoring is dissociable from people's conscious self-attributions of control.


Leonardo ◽  
2001 ◽  
Vol 34 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Robert L. Solso

Functional Magnetic Reso-nance Imaging (fMRI) scans of a skilled portrait artist and of a non-artist were made as each drew a series of faces. There was a dis-cernible increase in blood flow in the right-posterior parietal region of the brain for both the artist and non-artist during the task, a site normally associated with facial per-ception and processing. However, the level of activation appeared lower in the expert than in the nov-ice, suggesting that a skilled artist may process facial information more efficiently. In addition, the skilled artist showed greater acti-vation in the right frontal area of the brain than did the novice, which the author posits indicates that such an artist uses “higher-or-der” cognitive functions, such as the formation of associations and planning motor movements, when viewing and drawing a face.


1983 ◽  
Vol 58 (3) ◽  
pp. 440-442 ◽  
Author(s):  
Mamoru Taneda ◽  
Akatsuki Wakayama ◽  
Koji Ozaki ◽  
Kazuo Kataoka ◽  
Toru Hayakawa ◽  
...  

✓ An unusual case of delayed ischemia following rupture of an aneurysm of the left internal carotid artery is reported. Symptoms occurred twice after clipping the aneurysm and removing most of the subarachnoid blood on the left side the day after subarachnoid hemorrhage (SAH). Initial ischemia due to vasospasm occurred on the left side of the brain on the 8th day after SAH and responded favorably to induced hypervolemia. After complete recovery, a second episode due to vasospasm occurred on the 16th day after SAH on the right side of the brain from which the subarachnoid blood had not been removed. This caused a massive lesion and permanent severe neurological deficits. This case suggests that removal of subarachnoid blood may affect the severity and time course of vasospasm, and emphasizes the necessity of extensive removal of subarachnoid blood for prevention of severe delayed ischemic symptoms.


2010 ◽  
Vol 299 (6) ◽  
pp. H1875-H1883 ◽  
Author(s):  
John F. Eberth ◽  
Natasa Popovic ◽  
Vincent C. Gresham ◽  
Emily Wilson ◽  
Jay D. Humphrey

Elucidating early time courses of biomechanical responses by arteries to altered mechanical stimuli is paramount to understanding and eventually predicting long-term adaptations. In a previous study, we reported marked long-term (at 35–56 days) consequences of increased pulsatile hemodynamics on arterial structure and mechanics. Motivated by those findings, we focus herein on arterial responses over shorter periods (at 7, 10, and 14 days) following placement of a constrictive band on the aortic arch between the innominate and left carotid arteries of wild-type mice, which significantly increases pulsatility in the right carotid artery. We quantified hemodynamics in vivo using noninvasive ultrasound and measured wall properties and composition in vitro using biaxial mechanical testing and standard (immuno)histology. Compared with both baseline carotid arteries and left carotids after banding, right carotids after banding experienced a significant increase in both pulse pressure, which peaked at day 7, and a pulsatility index for velocity, which continued to rise over the 42-day study despite a transient increase in mean flow that peaked at day 7. Wall thickness and inner diameter also increased significantly in the right carotids, both peaking at day 14, with an associated marked early reduction in the in vivo axial stretch and a persistent decrease in smooth muscle contractility. Glycosaminoglycan content also increased within the wall, peaking at day 14, whereas increases in monocyte chemoattractant protein-1 activity and the collagen-to-elastin ratio continued to rise. These findings confirm that pulsatility is an important modulator of wall geometry, structure, and properties but reveal different early time courses for different microscopic and macroscopic metrics, presumably due to the separate degrees of influence of pressure and flow.


2019 ◽  
Vol 65 (6) ◽  
pp. 485-497
Author(s):  
I.V. Karpova ◽  
V.V. Mikheev ◽  
V.V. Marysheva ◽  
N.A. Kuritcyna ◽  
E.R. Bychkov ◽  
...  

In socially isolated male outbred albino mice, the changes of monoaminergic systems under acute hypoxia with hypercapnia were studied. In cerebral cortex, hippocampus and striatum of the right and left sides of the brain, the concentrations of norepinephrine, dopamine, serotonin and their metabolites – dihydroxyphenylacetic, homovanillic and 5-hydroxyindoleacetic acids were investigated using the HPLC method. In isolated mice, which were not subjected to hypoxia with hypercapnia, higher levels of dopamine and serotonin in the left cortex were found. There was no asymmetry in monoamines and their metabolites in other studied brain structures. 10 min after the onset of exposure, acute hypoxia with hypercapnia resulted in a right-sided increase in norepinephrine levels and a decrease in dopamine levels in the striatum and serotonin levels in the hippocampus. In the cerebral cortex, 10 min after of hypoxic exposure beginning, there was a left-sided decrease in the dopamine content, while the original asymmetry found in the cortex of intact animals disappeared. In isolated mice perished of hypoxia with hypercapnia, almost all parameters returned to the control level. The exception was the ratio of serotonin metabolite level to the neurotransmitter, which in the right cortex became lower than in control animals. In white outbred mice, the brain monoaminergic systems are suggested to be relatively resistant to the negative consequences of hypoxia and hypercapnia, and corresponding shifts resulting in the reflex brain response to changes in the gas composition of the respiratory air.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
WOO HYUN SHIM ◽  
Bruce Rosen ◽  
Jaeseung Jeong ◽  
Young Kim

Stroke impairs connections in the brain system, commonly resulting in significant sensorimotor deficits. Some degree of functional recovery typically occurs even after a severe stroke, yet changes in the brain connectivity that underlie such recovery are poorly understood. In this study, using rat stroke models, we monitored functional connectivity when the sensorimotor deficit recovered after a severe ischemic stroke (defined DWI by more than 15% of the entire brain volume). We used seven Sprague-Dawley rats (∼350g), which showed nearly full recovery of both motor and sensory functions approximately 180 days after 90 min occlusion of the right middle cerebral artery. Six healthy age controlled rats were used for the control group. BOLD MRI time courses during rest (10min, TR=1s, 9 slices) were collected. Both the seed-voxel analysis and the ROI-based analysis were performed, in which seed voxels were selected in the left S1FL, and multiple ROIs were placed over the somatosensory regions. Stroke rats showed the markedly decreased functional connectivity in the ipsilesional side (right) for both voxelwise and ROI-based methods. Interestingly, in contralesional (non-stroke) side (left), the voxelwise connectivity spatially expanded into the entire cortical area. The cross-correlation coefficient values between ROI’s slightly increased in the contralesional hemisphere compared to the control rats. In conclusion, we demonstrated that the restoration of sensorimotor function is associated more with the increase and spatial expansion of functional connectivity within the contralesional than the ipsilesional hemisphere.


2019 ◽  
pp. 159-173
Author(s):  
Jixing Li ◽  
John Hale

This study examines several different time-series formalizations of sentence-processing effort, as regards their ability to predict the observed fMRI time-course in regions of the brain. These regressors formalize cognitive theories of language processing involving phrase structure parsing, memory burden, lexical meaning, and other factors such as word sequence probabilities. The results suggest that even in the presence of these covariates, a predictor based on minimalist grammars significantly improves a regression model of the BOLD signal in a posterior temporal region, roughly corresponding to Wernicke’s area.


2020 ◽  
Author(s):  
Kanan Hirano ◽  
Kentaro Oba ◽  
Toshiki Saito ◽  
Shohei Yamazaki ◽  
Ryuta Kawashima ◽  
...  

Facing one’s own death and managing the fear of it are important existential issues, particularly in older populations. Although recent functional magnetic resonance imaging (fMRI) studies have investigated brain responses to death-related stimuli, none has examined whether the brain activation was specific to self-death or how it was related to the fear of death. In this study, during the fMRI measurements, 34 elderly participants (aged 60–72) were presented with either death-related or death-unrelated negative words and asked to evaluate these words based on their relevance to ‘self’ or ‘other’. Result showed that only the left supplementary motor area (SMA) was selectively activated during self-relevant judgments on death-related words. Regression analyses of the effect of fear of death on brain activation during death-related thoughts identified a significant negative linear correlation in the right supramarginal gyrus (SMG) and an inverted-U-shaped correlation in the posterior cingulate cortex (PCC) only during self-relevant judgments. Our results demonstrated the involvement of the SMA in existential aspect within thoughts of death. The distinct fear-of-death-dependent responses in the SMG and PCC may reflect fear-associated distancing of the physical self and the processing of death-related thoughts as a self-relevant future agenda, respectively.


2003 ◽  
Vol 15 (2) ◽  
pp. 272-293 ◽  
Author(s):  
Gina R. Kuperberg ◽  
Phillip J. Holcomb ◽  
Tatiana Sitnikova ◽  
Douglas Greve ◽  
Anders M. Dale ◽  
...  

The aim of this study was to gain further insights into how the brain distinguishes between meaning and syntax during language comprehension. Participants read and made plausibility judgments on sentences that were plausible, morpho-syntactically anomalous, or pragmatically anomalous. In an event-related potential (ERP) experiment, morphosyntactic and pragmatic violations elicited significant P600 and N400 effects, respectively, replicating previous ERP studies that have established qualitative differences in processing conceptually and syntactic anomalies. Our main focus was a functional magnetic resonance imaging (fMRI) study in which the same subjects read the same sentences presented in the same pseudorandomized sequence while performing the same task as in the ERP experiment. Rapid-presentation event-related fMRI methods allowed us to estimate the hemodynamic response at successive temporal windows as the sentences unfolded word by word, without assumptions about the shape of the underlying response function. Relative to nonviolated sentences, the pragmatic anomalies were associated with an increased hemodynamic response in left temporal and inferior frontal regions and a decreased response in the right medial parietal cortex. Relative to nonviolated sentences, the morphosyntactic anomalies were associated with an increased response in bilateral medial and lateral parietal regions and a decreased response in left temporal and inferior frontal regions. Thus, overlapping neural networks were modulated in opposite directions to the two types of anomaly. These fMRI findings document both qualitative and quantitative differences in how the brain distinguishes between these two types of anomalies. This suggests that morphosyntactic and pragmatic information can be processed in different ways but by the same neural systems.


Sign in / Sign up

Export Citation Format

Share Document