scholarly journals Time course of carotid artery growth and remodeling in response to altered pulsatility

2010 ◽  
Vol 299 (6) ◽  
pp. H1875-H1883 ◽  
Author(s):  
John F. Eberth ◽  
Natasa Popovic ◽  
Vincent C. Gresham ◽  
Emily Wilson ◽  
Jay D. Humphrey

Elucidating early time courses of biomechanical responses by arteries to altered mechanical stimuli is paramount to understanding and eventually predicting long-term adaptations. In a previous study, we reported marked long-term (at 35–56 days) consequences of increased pulsatile hemodynamics on arterial structure and mechanics. Motivated by those findings, we focus herein on arterial responses over shorter periods (at 7, 10, and 14 days) following placement of a constrictive band on the aortic arch between the innominate and left carotid arteries of wild-type mice, which significantly increases pulsatility in the right carotid artery. We quantified hemodynamics in vivo using noninvasive ultrasound and measured wall properties and composition in vitro using biaxial mechanical testing and standard (immuno)histology. Compared with both baseline carotid arteries and left carotids after banding, right carotids after banding experienced a significant increase in both pulse pressure, which peaked at day 7, and a pulsatility index for velocity, which continued to rise over the 42-day study despite a transient increase in mean flow that peaked at day 7. Wall thickness and inner diameter also increased significantly in the right carotids, both peaking at day 14, with an associated marked early reduction in the in vivo axial stretch and a persistent decrease in smooth muscle contractility. Glycosaminoglycan content also increased within the wall, peaking at day 14, whereas increases in monocyte chemoattractant protein-1 activity and the collagen-to-elastin ratio continued to rise. These findings confirm that pulsatility is an important modulator of wall geometry, structure, and properties but reveal different early time courses for different microscopic and macroscopic metrics, presumably due to the separate degrees of influence of pressure and flow.

2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Alessandro Robaldo ◽  
Guido Carignano ◽  
Alberto Balderi ◽  
Claudio Novali

Management of the symptomatic multiple stenosis of supra-aortic vessels (MSSVs) in a “bovine” aortic arch (BAA) configuration is infrequently reported. The optimal treatment choice remains debatable. A successful hybrid treatment for a proximal critical stenosis of the innominate and left common carotid artery was performed in a high-risk patient with a tandem symptomatic lesion in the right carotid bifurcation and a concentric vulnerable plaque in the bovine trunk. This case supports the feasibility, safety, and efficacy of a combined carotid bifurcation endarterectomy and retrograde kissing stenting of common carotid arteries with cerebral protection after evaluation of radiological, anatomical, and clinical parameters.


2021 ◽  
Vol 6 (7) ◽  
pp. 107-113
Author(s):  
Charles Nnamdi Udekwe ◽  
Akinlolu Adediran Ponnle

The geometry of the imaged transverse cross-section of carotid arteries in in-vivo B-mode ultrasound images are most times irregular, unsymmetrical, full of speckles and usually non-uniform. We had earlier developed a technique of cardinal point symmetry landmark distribution model (CPS-LDM) to completely characterize the Region of Interest (ROI) of the geometric shape of thick-walled simulated B-mode ultrasound images of carotid artery imaged in the transverse plane, but this was based on the symmetric property of the image. In this paper, this developed technique was applied to completely characterize the region of interest of the geometric shape of in-vivo B-mode ultrasound images of non-uniform carotid artery imaged in the transverse plane. In order to adapt the CPS-LD Model to the in-vivo carotid artery images, the single VS-VS vertical symmetry line common to the four ROIs of the symmetric image is replaced with each ROI having its own VS-VS vertical symmetry line. This adjustment enables the in-vivo carotid artery images possess symmetric properties, hence, ensuring that all mathematical operations of the CPS-LD Model are conveniently applied to them. This adaptability was observed to work well in segmenting the in-vivo carotid artery images. This paper shows the adaptive ability of the developed CPS-LD Model to successfully annotate and segment in-vivo B-mode ultrasound images of carotid arteries in the transverse cross-sectional plane either they are symmetrical or unsymmetrical.


2006 ◽  
Vol 95 (05) ◽  
pp. 763-766 ◽  
Author(s):  
Andreas Bültmann ◽  
Christian Herdeg ◽  
Zhongmin Li ◽  
Götz Münch ◽  
Christine Baumgartner ◽  
...  

SummaryPlatelet-mediated thrombus formation at the site of vascular injury isa major trigger for thrombo-ischemic complications after coronary interventions. The platelet collagen receptor glycoprotein VI (GPVI) plays a critical role in the initiation of arterial thrombus formation. Endothelial denudation of the right carotid artery in rabbits was induced through balloon injury. Subsequently, local delivery of soluble, dimeric fusion protein of GPVI (GPVI-Fc) (n=7) or control Fc (n=7) at the site of vascular injury was performed with a modified double-balloon drugdelivery catheter.Thrombus area within the injured carotid artery was quantified using a computer-assisted image analysis and was used as index of thrombus formation.The extent of thrombus formation was significantly reduced in GPVI-Fc- compared with control Fc-treated carotid arteries (relative thrombus area, GPVI-Fc vs. Fc: 9.3 ± 4.2 vs. 2.3 ± 1.7, p<0.001). Local delivery of soluble GPVI resulted in reduced thrombus formation after catheter-induced vascular injury.These data suggest a selective pharmacological modulation of GPVI-collagen interactions to be important for controlling onset and progression of pathological arterial thrombosis, predominantly or even exclusively at sites of injured carotid arteries in the absence of systemic platelet therapy.


2012 ◽  
Vol 7 ◽  
Author(s):  
Roberto W. Dal Negro ◽  
Silvia Tognella ◽  
Luca Bonadiman ◽  
Paola Turco

Background: Information on the effects of long-term oxygen treatment (LTOT) on blood hemoglobin (Hb) in severe COPD are limited. The aim was to assess blood Hb values in severe COPD, and investigate the time-course of both Hb and blood gas changes during a 3-year telemetric LTOT. Methods: A cohort of 132 severe COPD patients (94 males; 71.4 years ± 8.8 sd), newly admitted to the tele-LTOT program, was investigated. Subjects were divided according to their original blood Hb: group A: <13 g/dL; group B: ≥13<15 g/dL; group C: ≥ 5<16 g/dL; group D: ≥16 g/dL. Blood Hb (g/dL), PaO2 and PaCO2 (mmHg), SaO2 (%), and BMI were measured at LTOT admission (t0), and at least quarterly over three years (t1-t3). Wilcoxon test was used to compare t0 vs. t1 values; linear regression to assess a possible Hb-BMI relationship; ANOVA to compare changes in Hb time-courses over the 3 years. Results: LTOT induced a systematic increase of PaO2, and changes were significant since the first year (from 52.1 mmHg± 6.6sd to 65.1 mmHg± 8.7 sd, p<0.001). Changes in SaO2 were quite similar. Comparable and equally significant trends were seen in all subgroups (p<0.001). PaCO2 dropped within the first year of LTOT (from 49.4 mmHg± 9.1sd to 45.9 mmHg ±7.5 sd, p<0.001): the t0-t1 comparison proved significant (p<0.01) only in subgroups with the highest basal Hb, who showed a further PaCO2 decline over the remaining two years (p<0.001). Hb tended to normalization during LTOT only in subgroups with basal Hb>15 g/dl (ANOVA p<0.001); anemic subjects (Hb<13 g/dl) ameliorated not significantly in the same period (ANOVA = 0.5). Survival was independent of the original blood Hb. Anemia and polyglobulia are differently prevalent in COPD, the latter being the most represented in our cohort. LTOT affected both conditions, but to a different extent and according to different time-courses. The most striking Hb improvement was in polyglobulic patients in whom also PaO2, PaCO2 and SaO2 dramatically improved. In anemic subjects effects were smaller and slower, oxygenation being equally ameliorated by LTOT. Conclusions: LTOT effects on Hb and PaCO2 are regulated by an Hb-dependent gradient which seems independent of the original impairment of blood gases and of effects on oxygenation.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Scridon ◽  
VB Halatiu ◽  
AI Balan ◽  
DA Cozac ◽  
GV Moldovan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI Background The autonomic control of the pacemaker current, If, and the molecular mechanisms underlying parasympathetic If modulation are well understood. Conversely, the effects of chronic If blockade on the parasympathetic nervous system and on the heart rate (HR) response to acute parasympathetic changes are still largely unknown. Such interactions could significantly influence the course of patients undergoing chronic therapy with the If blocker ivabradine. Purpose We aimed to assess the effects of long-term If blockade using ivabradine on cardiac autonomic modulation and on the cardiovascular response to acute in vivo and in vitro parasympathetic stimulation. Methods Radiotelemetry ECG transmitters were implanted in 6 Control and 10 ivabradine-treated male Wistar rats (IVA; 3 weeks, 10 mg/kg/day); sympathetic and parasympathetic heart rate variability parameters were assessed. At the end of the study, the right atrium was removed and right atrial HCN(1-4) RNA expression levels were analyzed. The HR and systolic blood pressure (SBP) responses to in vivo electrical stimulation of the right vagus nerve (2–20 Hz) and the spontaneous sinus node discharge rate (SNDR) response to in vitro cholinergic receptors stimulation using carbamylcholine (10-9–10-6 mol/L) were assessed in 6 additional Control and 10 IVA rats. Results At the end of the study, mean 24-h HR was significantly lower in the IVA compared with the Control rats (301.3 ± 7.5 bpm vs. 341.5 ± 8.3 bpm; p&lt; 0.01). Ivabradine administration led to a significant increase in vagal tone and shifted the sympatho-vagal balance towards vagal dominance (awake, asleep, and over 24-h; all p&lt; 0.05). In the Control rats, in vivo vagus nerve stimulation induced a progressive decrease in both the SBP (p = 0.0001) and the HR (p&lt; 0.0001). Meanwhile, in the IVA rats, vagal stimulation had no effect on the HR (p = 0.16) and induced a significantly lower drop in SBP (p&lt; 0.05). Ivabradine-treated rats also presented a significantly lower SNDR drop in response to carbamylcholine (p&lt; 0.01) and significantly higher HCN4 expression (p = 0.02). Conclusion Long-term If blockade using ivabradine caused a significant increase in vagal tone and shifted the autonomic balance towards vagal dominance in rats. Given the highly proarrhythmic effects of vagal activation at the atrial level, these findings could provide an explanation for the increased risk of atrial fibrillation associated with ivabradine use in clinical trials. In addition, ivabradine reduced the HR response to direct muscarinic receptors stimulation, canceled the cardioinhibitory response and blunted the hemodynamic response to in vivo vagal stimulation, and led to significant sinus node HCN4 up-regulation. These data suggest that ivabradine-induced HCN4 and the consequent If up-regulation could render the sinus node less sensitive to acute vagal inputs and could thus protect against excessive bradycardia induced by acute vagal activation.


2002 ◽  
Vol 115 (7) ◽  
pp. 1373-1382 ◽  
Author(s):  
Kari L. Weber ◽  
William M. Bement

The microtubule, F-actin, and intermediate filament systems are often studied as isolated systems, yet the three display mutual interdependence in living cells. To overcome limitations inherent in analysis of polymer-polymer interactions in intact cells, associations between these systems were assessed in Xenopus egg extracts. In both fixed and unfixed extract preparations, cytokeratin associated with F-actin cables that spontaneously assembled in the extracts. Time-course experiments revealed that at early time points cytokeratin cables were invariably associated with F-actin cables,while at later time points they could be found without associated F-actin. In extract samples where F-actin assembly was prevented, cytokeratin formed unorganized aggregates rather than cables. Dynamic imaging revealed transport of cytokeratin by moving F-actin as well as examples of cytokeratin release from F-actin. Experimental alteration of F-actin network organization by addition of α-actinin resulted in a corresponding change in the organization of the cytokeratin network. Finally, pharmacological disruption of the F-actin network in intact, activated eggs disrupted the normal pattern of cytokeratin assembly. These results provide direct evidence for an association between F-actin and cytokeratin in vitro and in vivo, and indicate that this interaction is necessary for proper cytokeratin assembly after transition into the first mitotic interphase of Xenopus.


2011 ◽  
Vol 31 (12) ◽  
pp. 2313-2323 ◽  
Author(s):  
Lihong Jiang ◽  
Graeme F Mason ◽  
Douglas L Rothman ◽  
Robin A de Graaf ◽  
Kevin L Behar

Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours ( n=6) and receiving intravenous [2,4-13C2]-d- β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. d- β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.


2007 ◽  
Vol 97 (3) ◽  
pp. 2544-2552 ◽  
Author(s):  
Martin Pospischil ◽  
Zuzanna Piwkowska ◽  
Michelle Rudolph ◽  
Thierry Bal ◽  
Alain Destexhe

The optimal patterns of synaptic conductances for spike generation in central neurons is a subject of considerable interest. Ideally such conductance time courses should be extracted from membrane potential ( Vm) activity, but this is difficult because the nonlinear contribution of conductances to the Vm renders their estimation from the membrane equation extremely sensitive. We outline here a solution to this problem based on a discretization of the time axis. This procedure can extract the time course of excitatory and inhibitory conductances solely from the analysis of Vm activity. We test this method by calculating spike-triggered averages of synaptic conductances using numerical simulations of the integrate-and-fire model subject to colored conductance noise. The procedure was also tested successfully in biological cortical neurons using conductance noise injected with dynamic clamp. This method should allow the extraction of synaptic conductances from Vm recordings in vivo.


Neurosurgery ◽  
2010 ◽  
Vol 66 (4) ◽  
pp. E843-E844 ◽  
Author(s):  
Michael F. Stiefel ◽  
Min S. Park ◽  
Cameron G. McDougall ◽  
Felipe C. Albuquerque

Abstract OBJECTIVE Atherosclerotic stenosis or obstruction of the innominate artery is rare. Traditional surgical management is a technically demanding intervention with acceptable, but not negligible, rates of morbidity and mortality. Endovascular approaches to supraaortic lesions have been successful and are now the preferred treatment for stenoses of the brachiocephalic vessels. The use of cerebral protection devices in subclavian and innominate interventions is less established. CLINICAL PRESENTATION A 58-year-old woman had Takayasu giant cell arteritis with a history of a left middle cerebral artery stroke 3 weeks after undergoing placement of a left common carotid artery (CCA) stent and right innominate artery stent in 1998. She recently presented with worsening dizziness, ataxia, and right arm numbness and was referred to the endovascular neurosurgery service for management. INTERVENTION Initial angiography revealed left CCA stenosis and right innominate occlusion. The patient initially underwent left CCA angioplasty, planned as a staged procedure. This was followed by recanalization of the right innominate artery through an approach using both femoral arteries and the right brachial artery. This 3-site technique allowed simultaneous distal protection of both the right cervical vertebral and carotid arteries. CONCLUSION Reopening a chronically occluded innominate artery risks an embolic shower through both the right vertebral and carotid arteries. Using multiple sites of arterial access, distal protection devices can be deployed in both the cervical vertebral and carotid arteries to reduce the risk of stroke.


PEDIATRICS ◽  
1989 ◽  
Vol 83 (1) ◽  
pp. 72-78
Author(s):  
Penny Glass ◽  
Marilea Miller ◽  
Billie Short

Extracorporeal membrane oxygenation is an important technology in the treatment of high-risk infants whose long-term outcome is being followed prospectively at our institution. The extracorporeal membrane oxygenation procedure allows temporary cardiopulmonary support for critically ill full-term neonates who are refractory to maximum ventilatory and medical management as a consequence of severe persistent pulmonary hypertension. The technique necessitates both the permanent ligation of the right common carotid artery and jugular vein and systemic heparinization. The survivors constitute a unique group of high-risk infants, from the standpoint of the hypoxic-ischemic insults preceding extracorporeal membrane oxygenation and the risks associated with the procedure. Our results indicate that most of our survivors are developing normally at 1 year. Major morbidity, in terms of either significant developmental delay (Bayley mental and motor indices less than 70) or significant neuromotor abnormality, occurred in only 10% of these infants. Poor outcome was associated with major intracranial hemorrhage and chronic lung disease. Ligation of the right carotid artery and jugular vein was not associated with a consistent lateralizing lesion. Long-term follow-up through school age is essential.


Sign in / Sign up

Export Citation Format

Share Document