Variational Mixture of Bayesian Independent Component Analyzers

2003 ◽  
Vol 15 (1) ◽  
pp. 213-252 ◽  
Author(s):  
R. A. Choudrey ◽  
S. J. Roberts

There has been growing interest in subspace data modeling over the past few years. Methods such as principal component analysis, factor analysis, and independent component analysis have gained in popularity and have found many applications in image modeling, signal processing, and data compression, to name just a few. As applications and computing power grow, more and more sophisticated analyses and meaningful representations are sought. Mixture modeling methods have been proposed for principal and factor analyzers that exploit local gaussian features in the subspace manifolds. Meaningful representations may be lost, however, if these local features are nongaussian or discontinuous. In this article, we propose extending the gaussian analyzers mixture model to an independent component analyzers mixture model. We employ recent developments in variational Bayesian inference and structure determination to construct a novel approach for modeling nongaussian, discontinuous manifolds. We automatically determine the local dimensionality of each manifold and use variational inference to calculate the optimum number of ICA components needed in our mixture model. We demonstrate our framework on complex synthetic data and illustrate its application to real data by decomposing functional magnetic resonance images into meaningful—and medically useful—features.

2007 ◽  
Vol 19 (2) ◽  
pp. 513-545 ◽  
Author(s):  
Inge Koch ◽  
Kanta Naito

This letter is concerned with the problem of selecting the best or most informative dimension for dimension reduction and feature extraction in high-dimensional data. The dimension of the data is reduced by principal component analysis; subsequent application of independent component analysis to the principal component scores determines the most nongaussian directions in the lower-dimensional space. A criterion for choosing the optimal dimension based on bias-adjusted skewness and kurtosis is proposed. This new dimension selector is applied to real data sets and compared to existing methods. Simulation studies for a range of densities show that the proposed method performs well and is more appropriate for nongaussian data than existing methods.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carlos G. Urzúa-Traslaviña ◽  
Vincent C. Leeuwenburgh ◽  
Arkajyoti Bhattacharya ◽  
Stefan Loipfinger ◽  
Marcel A. T. M. van Vugt ◽  
...  

AbstractThe interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal.


2015 ◽  
Vol 18 ◽  
Author(s):  
Rubén Daniel Ledesma ◽  
Pedro Valero-Mora ◽  
Guillermo Macbeth

AbstractExploratory Factor Analysis and Principal Component Analysis are two data analysis methods that are commonly used in psychological research. When applying these techniques, it is important to determine how many factors to retain. This decision is sometimes based on a visual inspection of the Scree plot. However, the Scree plot may at times be ambiguous and open to interpretation. This paper aims to explore a number of graphical and computational improvements to the Scree plot in order to make it more valid and informative. These enhancements are based on dynamic and interactive data visualization tools, and range from adding Parallel Analysis results to "linking" the Scree plot with other graphics, such as factor-loadings plots. To illustrate our proposed improvements, we introduce and describe an example based on real data on which a principal component analysis is appropriate. We hope to provide better graphical tools to help researchers determine the number of factors to retain.


Sign in / Sign up

Export Citation Format

Share Document