Learning by Kernel Polarization

2005 ◽  
Vol 17 (6) ◽  
pp. 1264-1275 ◽  
Author(s):  
Yoram Baram

Kernels are key components of pattern recognition mechanisms. We propose a universal kernel optimality criterion, which is independent of the classifier to be used. Defining data polarization as a process by which points of different classes are driven to geometrically opposite locations in a confined domain, we propose selecting the kernel parameter values that polarize the data in the associated feature space. Conversely, the kernel is said to be polarized by the data. Kernel polarization gives rise to an unconstrained optimization problem. We show that complete kernel polarization yields consistent classification by kernel-sum classifiers. Tested on real-life data, polarized kernels demonstrate a clear advantage over the Euclidean distance in proximity classifiers. Embedded in a support vectors classifier, kernel polarization is found to yield about the same performance as exhaustive parameter search.

2021 ◽  
Vol 31 (5) ◽  
Author(s):  
Joachim Schreurs ◽  
Iwein Vranckx ◽  
Mia Hubert ◽  
Johan A. K. Suykens ◽  
Peter J. Rousseeuw

AbstractThe minimum regularized covariance determinant method (MRCD) is a robust estimator for multivariate location and scatter, which detects outliers by fitting a robust covariance matrix to the data. Its regularization ensures that the covariance matrix is well-conditioned in any dimension. The MRCD assumes that the non-outlying observations are roughly elliptically distributed, but many datasets are not of that form. Moreover, the computation time of MRCD increases substantially when the number of variables goes up, and nowadays datasets with many variables are common. The proposed kernel minimum regularized covariance determinant (KMRCD) estimator addresses both issues. It is not restricted to elliptical data because it implicitly computes the MRCD estimates in a kernel-induced feature space. A fast algorithm is constructed that starts from kernel-based initial estimates and exploits the kernel trick to speed up the subsequent computations. Based on the KMRCD estimates, a rule is proposed to flag outliers. The KMRCD algorithm performs well in simulations, and is illustrated on real-life data.


2009 ◽  
Vol 21 (10) ◽  
pp. 2942-2969 ◽  
Author(s):  
Petra Schneider ◽  
Michael Biehl ◽  
Barbara Hammer

Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.


2014 ◽  
Vol 25 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Martin Peper ◽  
Simone N. Loeffler

Current ambulatory technologies are highly relevant for neuropsychological assessment and treatment as they provide a gateway to real life data. Ambulatory assessment of cognitive complaints, skills and emotional states in natural contexts provides information that has a greater ecological validity than traditional assessment approaches. This issue presents an overview of current technological and methodological innovations, opportunities, problems and limitations of these methods designed for the context-sensitive measurement of cognitive, emotional and behavioral function. The usefulness of selected ambulatory approaches is demonstrated and their relevance for an ecologically valid neuropsychology is highlighted.


Author(s):  
Eleni Pantazi ◽  
Alexios Travlos ◽  
Evaggelia Vogiatzi ◽  
Ifigenia Kostoglou-Athanassiou

Sign in / Sign up

Export Citation Format

Share Document