Recent Developments in the Evolution of Morphologies and Controllers for Physically Simulated Creatures

2001 ◽  
Vol 7 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Tim Taylor ◽  
Colm Massey

Karl Sims' work [25, 26] on evolving body shapes and controllers for three-dimensional, physically simulated creatures generated wide interest on its publication in 1994. The purpose of this article is threefold: (a) to highlight a spate of recent work by a number of researchers in replicating, and in some cases extending, Sims' results using standard PCs (Sims' original work was done on a Connection Machine CM-5 parallel computer). In particular, a re-implementation of Sims' work by the authors will be described and discussed; (b) to illustrate how off-the-shelf physics engines can be used in this sort of work, and also to highlight some deficiencies of these engines and pitfalls when using them; and (c) to indicate how these recent studies stand in respect to Sims' original work.

Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
P. Kim ◽  
R. Jorge ◽  
W. Dorland

A simplified analytical form of the on-axis magnetic well and Mercier's criterion for interchange instabilities for arbitrary three-dimensional magnetic field geometries is derived. For this purpose, a near-axis expansion based on a direct coordinate approach is used by expressing the toroidal magnetic flux in terms of powers of the radial distance to the magnetic axis. For the first time, the magnetic well and Mercier's criterion are then written as a one-dimensional integral with respect to the axis arclength. When compared with the original work of Mercier, the derivation here is presented using modern notation and in a more streamlined manner that highlights essential steps. Finally, these expressions are verified numerically using several quasisymmetric and non-quasisymmetric stellarator configurations including Wendelstein 7-X.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


2016 ◽  
Vol 32 (1) ◽  
Author(s):  
Yuehao Luo ◽  
Xia Xu ◽  
Dong Li ◽  
Wen Song

AbstractWith the rapid development of science and technology, increasing research interests have been focused on environment protection, global warming, and energy shortage. At present, reducing friction force as much as possible has developed into an urgent issue. Sharkskin effect has the potential ability to lower viscous drag on the fluid-solid interface in turbulence, and therefore, how to fabricate bio-inspired sharkskin surfaces is progressively becoming the hot topic. In this review, various methods of fabricating drag reduction surfaces covering biological sharkskin morphology are illustrated and discussed systematically, mainly involving direct bio-replicated, synthetic fabricating, bio/micro-rolling, enlarged solvent-swelling, drag reduction additive low-releasing, trans-scale enlarged three-dimensional fabricating, flexible printing, large-proportional shrunken bio-replicating, ultraviolet (UV) curable painting, and stretching deformed methods. The overview has the potential benefits in better acquainting with the recent research status of fabricating sharkskin surfaces covering the biological morphology.


2006 ◽  
Vol 2 (14) ◽  
pp. 308-309
Author(s):  
Friedrich K. Röpke

AbstractKeeping up with ever more detailed observations, Type Ia supernova (SN Ia) explosion models have seen a brisk development over the past years. The aim is to construct a self-consistent picture of the physical processes in order to gain the predictive power necessary to answer questions arising from the application of SNe Ia as cosmological distance indicators. We review recent developments in modeling these objects focusing on three-dimensional simulations.


1993 ◽  
Vol 115 (2) ◽  
pp. 283-295 ◽  
Author(s):  
W. N. Dawes

This paper describes recent developments to a three-dimensional, unstructured mesh, solution-adaptive Navier–Stokes solver. By adopting a simple, pragmatic but systematic approach to mesh generation, the range of simulations that can be attempted is extended toward arbitrary geometries. The combined benefits of the approach result in a powerful analytical ability. Solutions for a wide range of flows are presented, including a transonic compressor rotor, a centrifugal impeller, a steam turbine nozzle guide vane with casing extraction belt, the internal coolant passage of a radial inflow turbine, and a turbine disk cavity flow.


Sign in / Sign up

Export Citation Format

Share Document