scholarly journals A Developmental Examination of Amygdala Response to Facial Expressions

2008 ◽  
Vol 20 (9) ◽  
pp. 1565-1582 ◽  
Author(s):  
Amanda E. Guyer ◽  
Christopher S. Monk ◽  
Erin B. McClure-Tone ◽  
Eric E. Nelson ◽  
Roxann Roberson-Nay ◽  
...  

Several lines of evidence implicate the amygdala in face-emotion processing, particularly for fearful facial expressions. Related findings suggest that face-emotion processing engages the amygdala within an interconnected circuitry that can be studied using a functional-connectivity approach. Past work also underscores important functional changes in the amygdala during development. Taken together, prior research on amygdala function and development reveals a need for more work examining developmental changes in the amygdala's response to fearful faces and in amygdala functional connectivity during face processing. The present study used event-related functional magnetic resonance imaging to compare 31 adolescents (9–17 years old) and 30 adults (21–40 years old) on activation to fearful faces in the amygdala and other regions implicated in face processing. Moreover, these data were used to compare patterns of amygdala functional connectivity in adolescents and adults. During passive viewing, adolescents demonstrated greater amygdala and fusiform activation to fearful faces than did adults. Functional connectivity analysis revealed stronger connectivity between the amygdala and the hippocampus in adults than in adolescents. Within each group, variability in age did not correlate with amygdala response, and sex-related developmental differences in amygdala response were not found. Eye movement data collected outside of the magnetic resonance imaging scanner using the same task suggested that developmental differences in amygdala activation were not attributable to differences in eye-gaze patterns. Amygdala hyperactivation in response to fearful faces may explain increased vulnerability to affective disorders in adolescence; stronger amygdala-hippocampus connectivity in adults than adolescents may reflect maturation in learning or habituation to facial expressions.

NeuroImage ◽  
2005 ◽  
Vol 28 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Greg Allen ◽  
Roderick McColl ◽  
Holly Barnard ◽  
Wendy K. Ringe ◽  
James Fleckenstein ◽  
...  

2021 ◽  
Author(s):  
Yusi Chen ◽  
Qasim Bukhari ◽  
Tiger Wutu Lin ◽  
Terrence J Sejnowski

Recordings from resting state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of ''ground truth'' has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. Applied to synthetic datasets, dCov-FC was more effective than covariance and partial correlation in reducing false positive connections and more accurately matching the underlying structural connectivity. When we applied dCov-FC to resting state fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose rs-fMRI were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration causally related to behavior.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


Sign in / Sign up

Export Citation Format

Share Document