scholarly journals Load Modulation of BOLD Response and Connectivity Predicts Working Memory Performance in Younger and Older Adults

2011 ◽  
Vol 23 (8) ◽  
pp. 2030-2045 ◽  
Author(s):  
Irene E. Nagel ◽  
Claudia Preuschhof ◽  
Shu-Chen Li ◽  
Lars Nyberg ◽  
Lars Bäckman ◽  
...  

Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity with age trends in WM performance. Using functional magnetic resonance imaging, we investigated the relations among WM performance, neural activity in the WM network, and adult age using a parametric letter n-back task in 30 younger adults (21–31 years) and 30 older adults (60–71 years). Individual differences in the WM network's responsivity to increasing task difficulty were related to WM performance, with a more responsive BOLD signal predicting greater WM proficiency. Furthermore, individuals with higher WM performance showed greater change in connectivity between left dorsolateral prefrontal cortex and left premotor cortex across load. We conclude that a more responsive WM network contributes to higher WM performance, regardless of adult age. Our results support the notion that individual differences in WM performance are important to consider when studying the WM network, particularly in age-comparative studies.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
P. Šimko ◽  
M. Pupíková ◽  
M. Gajdoš ◽  
I. Rektorová

Enhancing cognitive functions through noninvasive brain stimulation is of enormous public interest, particularly for the aging population in whom processes such as working memory are known to decline. In a randomized double-blind crossover study, we investigated the acute behavioral and neural aftereffects of bifrontal and frontoparietal transcranial direct current stimulation (tDCS) combined with visual working memory (VWM) training on 25 highly educated older adults. Resting-state functional connectivity (rs-FC) analysis was performed prior to and after each stimulation session with a focus on the frontoparietal control network (FPCN). The bifrontal montage with anode over the left dorsolateral prefrontal cortex enhanced VWM accuracy as compared to the sham stimulation. With the rs-FC within the FPCN, we observed significant stimulation × time interaction using bifrontal tDCS. We found no cognitive aftereffects of the frontoparietal tDCS compared to sham stimulation. Our study shows that a single bifrontal tDCS combined with cognitive training may enhance VWM performance and rs-FC within the relevant brain network even in highly educated older adults.


2018 ◽  
Author(s):  
Agnieszka J Jaroslawska ◽  
Stephen Rhodes

Normal adult aging is known to be associated with lower performance on tasks assessing the short-term storage of information. However, whether or not there are additional age-related deficits associated with concurrent storage and processing demands within working memory remains unclear. Methodological differences across studies are considered critical factors responsible for the variability in the magnitude of the reported age effects. Here we synthesized comparisons of younger and older adults' performance on tasks measuring storage alone against those combining storage with concurrent processing of information. We also considered the influence of task-related moderator variables. Meta-analysis of effect sizes revealed a small but disproportionate effect of processing on older adults' memory performance. Moderator analysis indicated that equating single task storage performance across age groups (titration) and the nature of the stimulus material were important determinants of memory accuracy. Titration of storage task difficulty was found to lead to smaller, and non-significant, age-differences in dual task costs. These results were corroborated by supplementary Brinley and state-trace analyses. We discuss these findings in relation to the extant literature and current working memory theory as well as possibilities for future research to address the residual heterogeneity in effect sizes.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


Author(s):  
Barbara Carretti ◽  
Erika Borella ◽  
Rossana De Beni

Abstract. The paper examines the effect of strategic training on the performance of younger and older adults in an immediate list-recall and a working memory task. The experimental groups of younger and older adults received three sessions of memory training, teaching the use of mental images to improve the memorization of word lists. In contrast, the control groups were not instructed to use any particular strategy, but they were requested to carry out the memory exercises. The results showed that strategic training improved performance of both the younger and older experimental groups in the immediate list recall and in the working memory task. Of particular interest, the improvement in working memory performance of the older experimental group was comparable to that of the younger experimental group.


2020 ◽  
pp. 1-11
Author(s):  
Yang Jiang ◽  
Juan Li ◽  
Frederick A. Schmitt ◽  
Gregory A. Jicha ◽  
Nancy B. Munro ◽  
...  

Background: Early prognosis of high-risk older adults for amnestic mild cognitive impairment (aMCI), using noninvasive and sensitive neuromarkers, is key for early prevention of Alzheimer’s disease. We have developed individualized measures in electrophysiological brain signals during working memory that distinguish patients with aMCI from age-matched cognitively intact older individuals. Objective: Here we test longitudinally the prognosis of the baseline neuromarkers for aMCI risk. We hypothesized that the older individuals diagnosed with incident aMCI already have aMCI-like brain signatures years before diagnosis. Methods: Electroencephalogram (EEG) and memory performance were recorded during a working memory task at baseline. The individualized baseline neuromarkers, annual cognitive status, and longitudinal changes in memory recall scores up to 10 years were analyzed. Results: Seven of the 19 cognitively normal older adults were diagnosed with incident aMCI for a median 5.2 years later. The seven converters’ frontal brainwaves were statistically identical to those patients with diagnosed aMCI (n = 14) at baseline. Importantly, the converters’ baseline memory-related brainwaves (reduced mean frontal responses to memory targets) were significantly different from those who remained normal. Furthermore, differentiation pattern of left frontal memory-related responses (targets versus nontargets) was associated with an increased risk hazard of aMCI (HR = 1.47, 95% CI 1.03, 2.08). Conclusion: The memory-related neuromarkers detect MCI-like brain signatures about five years before diagnosis. The individualized frontal neuromarkers index increased MCI risk at baseline. These noninvasive neuromarkers during our Bluegrass memory task have great potential to be used repeatedly for individualized prognosis of MCI risk and progression before clinical diagnosis.


2021 ◽  
Vol 13 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Jean-Philippe Antonietti ◽  
Pamela Banta Lavenex ◽  
...  

During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


Sign in / Sign up

Export Citation Format

Share Document