scholarly journals Negative Effects of Embodiment in a Visuo-Spatial Working Memory Task in Children, Young Adults, and Older Adults

2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.

2017 ◽  
Vol 29 (9) ◽  
pp. 1483-1497 ◽  
Author(s):  
Camarin E. Rolle ◽  
Joaquin A. Anguera ◽  
Sasha N. Skinner ◽  
Bradley Voytek ◽  
Adam Gazzaley

Daily experiences demand both focused and broad allocation of attention for us to interact efficiently with our complex environments. Many types of attention have shown age-related decline, although there is also evidence that such deficits may be remediated with cognitive training. However, spatial attention abilities have shown inconsistent age-related differences, and the extent of potential enhancement of these abilities remains unknown. Here, we assessed spatial attention in both healthy younger and older adults and trained this ability in both age groups for 5 hr over the course of 2 weeks using a custom-made, computerized mobile training application. We compared training-related gains on a spatial attention assessment and spatial working memory task to age-matched controls who engaged in expectancy-matched, active placebo computerized training. Age-related declines in spatial attention abilities were observed regardless of task difficulty. Spatial attention training led to improved focused and distributed attention abilities as well as improved spatial working memory in both younger and older participants. No such improvements were observed in either of the age-matched control groups. Note that these findings were not a function of improvements in simple response time, as basic motoric function did not change after training. Furthermore, when using change in simple response time as a covariate, all findings remained significant. These results suggest that spatial attention training can lead to enhancements in spatial working memory regardless of age.


Author(s):  
Rachel O Coats ◽  
Amanda H Waterman ◽  
Fiona Ryder ◽  
Amy L Atkinson ◽  
Richard J Allen

Abstract Objectives In young adults, the ability to verbally recall instructions in working memory is enhanced if the sequences are physically enacted by the participant (self-enactment) or the experimenter (demonstration) during encoding. Here we examine the effects of self-enactment and demonstration at encoding on working memory performance in older and younger adults. Method Fifty young (18–23 years) and 40 older (60–89 years) adults listened to sequences of novel action-object pairs before verbally recalling them in the correct order. There were three different encoding conditions: spoken only, spoken + demonstration, and spoken + self-enactment. We included two different levels of difficulty to investigate whether task complexity moderated the effect of encoding condition and whether this differed between age groups. Results Relative to the spoken only condition, demonstration significantly improved young and older adults’ serial recall performance, but self-enactment only enhanced performance in the young adults, and this boost was smaller than the one gained through demonstration. Discussion Our findings suggest that additional spatial-motoric information is beneficial for older adults when the actions are demonstrated to them, but not when the individual must enact the instructions themselves.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


Author(s):  
Barbara Carretti ◽  
Erika Borella ◽  
Rossana De Beni

Abstract. The paper examines the effect of strategic training on the performance of younger and older adults in an immediate list-recall and a working memory task. The experimental groups of younger and older adults received three sessions of memory training, teaching the use of mental images to improve the memorization of word lists. In contrast, the control groups were not instructed to use any particular strategy, but they were requested to carry out the memory exercises. The results showed that strategic training improved performance of both the younger and older experimental groups in the immediate list recall and in the working memory task. Of particular interest, the improvement in working memory performance of the older experimental group was comparable to that of the younger experimental group.


2020 ◽  
pp. 1-11
Author(s):  
Yang Jiang ◽  
Juan Li ◽  
Frederick A. Schmitt ◽  
Gregory A. Jicha ◽  
Nancy B. Munro ◽  
...  

Background: Early prognosis of high-risk older adults for amnestic mild cognitive impairment (aMCI), using noninvasive and sensitive neuromarkers, is key for early prevention of Alzheimer’s disease. We have developed individualized measures in electrophysiological brain signals during working memory that distinguish patients with aMCI from age-matched cognitively intact older individuals. Objective: Here we test longitudinally the prognosis of the baseline neuromarkers for aMCI risk. We hypothesized that the older individuals diagnosed with incident aMCI already have aMCI-like brain signatures years before diagnosis. Methods: Electroencephalogram (EEG) and memory performance were recorded during a working memory task at baseline. The individualized baseline neuromarkers, annual cognitive status, and longitudinal changes in memory recall scores up to 10 years were analyzed. Results: Seven of the 19 cognitively normal older adults were diagnosed with incident aMCI for a median 5.2 years later. The seven converters’ frontal brainwaves were statistically identical to those patients with diagnosed aMCI (n = 14) at baseline. Importantly, the converters’ baseline memory-related brainwaves (reduced mean frontal responses to memory targets) were significantly different from those who remained normal. Furthermore, differentiation pattern of left frontal memory-related responses (targets versus nontargets) was associated with an increased risk hazard of aMCI (HR = 1.47, 95% CI 1.03, 2.08). Conclusion: The memory-related neuromarkers detect MCI-like brain signatures about five years before diagnosis. The individualized frontal neuromarkers index increased MCI risk at baseline. These noninvasive neuromarkers during our Bluegrass memory task have great potential to be used repeatedly for individualized prognosis of MCI risk and progression before clinical diagnosis.


2021 ◽  
Vol 13 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Jean-Philippe Antonietti ◽  
Pamela Banta Lavenex ◽  
...  

During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.


2018 ◽  
Author(s):  
Jiahe Zhang ◽  
Joseph Andreano ◽  
Bradford C. Dickerson ◽  
Alexandra Touroutoglou ◽  
Lisa Feldman Barrett

ABSTRACT“Superagers” are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is preserved in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 elderly adults (66.9 ± 5.5 years old). As in prior studies, superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting state fMRI scan and performed a separate visual-verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared to typical older adults and similar connectivity compared to young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond preserved neuroanatomy. A post-hoc analysis revealed that DMN and SN nodes were more strongly inversely correlated in superagers than in typical older adults but were similarly correlated in superagers and young adults. Stronger between-network inverse correlations also predicted better memory performance in the entire sample of older adults. These results extend our understanding of the neural basis of superaging as a model of successful aging.SIGNIFICANCE STATEMENTMemory capacity generally declines with age, but a unique group of older adults – ‘superagers’ – have memory capacities rivaling those of younger adults, as well as preserved neuroanatomy in an ensemble of regions contained in two core intrinsic brain networks – the default mode and salience networks. In this study, we assessed the strength of intrinsic connectivity within these networks in superagers and typical older adults compared to young adults. We also expanded the behavioral assessment of memory. As predicted, superagers have intrinsic connectivity within the default mode and salience networks that is stronger than typical older adults and similar to that of young adults. Within older adults, preserved intrinsic connectivity within each network was uniquely associated with better memory performance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Larry E. Humes ◽  
Gary R. Kidd ◽  
Jennifer J. Lentz

The Test of Basic Auditory Capabilities (TBAC) is a battery of auditory-discrimination tasks and speech-identification tasks that has been normed on several hundred young normal-hearing adults. Previous research with the TBAC suggested that cognitive function may impact the performance of older adults. Here, we examined differences in performance on several TBAC tasks between a group of 34 young adults with a mean age of 22.5 years (SD = 3.1 years) and a group of 115 older adults with a mean age of 69.2 years (SD = 6.2 years) recruited from the local community. Performance of the young adults was consistent with prior norms for this age group. Not surprisingly, the two groups differed significantly in hearing loss and working memory with the older adults having more hearing loss and poorer working memory than the young adults. The two age groups also differed significantly in performance on six of the nine measures extracted from the TBAC (eight test scores and one average test score) with the older adults consistently performing worse than the young adults. However, when these age-group comparisons were repeated with working memory and hearing loss as covariates, the groups differed in performance on only one of the nine auditory measures from the TBAC. For eight of the nine TBAC measures, working memory was a significant covariate and hearing loss never emerged as a significant factor. Thus, the age-group deficits observed initially on the TBAC most often appeared to be mediated by age-related differences in working memory rather than deficits in auditory processing. The results of these analyses of age-group differences were supported further by linear-regression analyses with each of the 9 TBAC scores serving as the dependent measure and age, hearing loss, and working memory as the predictors. Regression analyses were conducted for the full set of 149 adults and for just the 115 older adults. Working memory again emerged as the predominant factor impacting TBAC performance. It is concluded that working memory should be considered when comparing the performance of young and older adults on auditory tasks, including the TBAC.


2019 ◽  
Vol 30 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Jiahe Zhang ◽  
Joseph M Andreano ◽  
Bradford C Dickerson ◽  
Alexandra Touroutoglou ◽  
Lisa Feldman Barrett

Abstract “Superagers” are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is greater in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 older adults (66.9 ± 5.5 years old). Superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and performed a separate visual–verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared with typical older adults and similar connectivity compared with young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond youthful neuroanatomy. These results extend our understanding of the neural basis of superaging as a model of successful aging.


Sign in / Sign up

Export Citation Format

Share Document