scholarly journals Interpersonal Competence in Young Adulthood and Right Laterality in White Matter

2014 ◽  
Vol 26 (6) ◽  
pp. 1257-1265 ◽  
Author(s):  
Nicola De Pisapia ◽  
Mauro Serra ◽  
Paola Rigo ◽  
Justin Jager ◽  
Nico Papinutto ◽  
...  

The right hemisphere of the human brain is known to be involved in processes underlying emotion and social cognition. Clinical neuropsychology investigations and brain lesion studies have linked a number of personality and social disorders to abnormal white matter (WM) integrity in the right hemisphere. Here, we tested the hypothesis that interpersonal competencies are associated with integrity of WM tracts in the right hemisphere of healthy young adults. Thirty-one participants underwent diffusion tensor imaging scanning. Fractional anisotropy was used to quantify water diffusion. After the scanning session, participants completed the Adolescent Interpersonal Competence Questionnaire. Fractional anisotropy was subsequently correlated with Adolescent Interpersonal Competence Questionnaire scores using tract-based spatial statistics. Higher interpersonal competencies are related to higher WM integrity in several major tracts of the right hemisphere, in specific the uncinate fasciculus, the cingulum, the forceps minor, the infero-fronto occipital fasciculus, the inferior longitudinal fasciculus, and the superior longitudinal fasciculus. These results provide the first direct analysis of the neuroanatomical basis of interpersonal competencies and young adult self-reported skills in social contexts.

Author(s):  
Agnieszka Pawełczyk ◽  
Emila Łojek ◽  
Natalia Żurner ◽  
Marta Gawłowska-Sawosz ◽  
Piotr Gębski ◽  
...  

Abstract Objective: Higher-order language disturbances could be the result of white matter tract abnormalities. The study explores the relationship between white matter and pragmatic skills in first-episode schizophrenia. Methods: Thirty-four first-episode patients with schizophrenia and 32 healthy subjects participated in a pragmatic language and Diffusion Tensor Imaging study, where fractional anisotropy of the arcuate fasciculus, corpus callosum and cingulum was correlated with the Polish version of the Right Hemisphere Language Battery. Results: The patients showed reduced fractional anisotropy in the right arcuate fasciculus, left anterior cingulum bundle and left forceps minor. Among the first episode patients, reduced understanding of written metaphors correlated with reduced fractional anisotropy of left forceps minor, and greater explanation of written and picture metaphors correlated with reduced fractional anisotropy of the left anterior cingulum. Conclusions: The white matter dysfunctions may underlie the pragmatic language impairment in schizophrenia. Our results shed further light on the functional neuroanatomical basis of pragmatic language use by patients with schizophrenia.


2008 ◽  
Vol 20 (2) ◽  
pp. 268-284 ◽  
Author(s):  
Cibu Thomas ◽  
Linda Moya ◽  
Galia Avidan ◽  
Kate Humphreys ◽  
Kwan Jin Jung ◽  
...  

An age-related decline in face processing, even under conditions in which learning and memory are not implicated, has been well documented, but the mechanism underlying this perceptual alteration remains unknown. Here, we examine whether this behavioral change may be accounted for by a reduction in white matter connectivity with age. To this end, we acquired diffusion tensor imaging data from 28 individuals aged 18 to 86 years and quantified the number of fibers, voxels, and fractional anisotropy of the two major tracts that pass through the fusiform gyrus, the pre-eminent face processing region in the ventral temporal cortex. We also measured the ability of a subset of these individuals to make fine-grained discriminations between pairs of faces and between pairs of cars. There was a significant reduction in the structural integrity of the inferior fronto-occipital fasciculus (IFOF) in the right hemisphere as a function of age on all dependent measures and there were also some changes in the left hemisphere, albeit to a lesser extent. There was also a clear age-related decrement in accuracy of perceptual discrimination, especially for more challenging perceptual discriminations, and this held to a greater degree for faces than for cars. Of greatest relevance, there was a robust association between the reduction of IFOF integrity in the right hemisphere and the decline in face perception, suggesting that the alteration in structural connectivity between the right ventral temporal and frontal cortices may account for the age-related difficulties in face processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Evie Kourtidou ◽  
Dimitrios Kasselimis ◽  
Georgia Angelopoulou ◽  
Efstratios Karavasilis ◽  
Georgios Velonakis ◽  
...  

The involvement of the right hemisphere (RH) in language, and especially after aphasia resulting from left hemisphere (LH) lesions, has been recently highlighted. The present study investigates white matter structure in the right hemisphere of 25 chronic post-stroke aphasic patients after LH lesions in comparison with 24 healthy controls, focusing on the four cortico-cortical tracts that link posterior parietal and temporal language-related areas with Broca’s region in the inferior frontal gyrus of the LH: the Superior Longitudinal Fasciculi II and III (SLF II and SLF III), the Arcuate Fasciculus (AF), and the Temporo-Frontal extreme capsule Fasciculus (TFexcF). Additionally, the relationship of these RH white matter tracts to language performance was examined. The patients with post-stroke aphasia in the chronic phase and the healthy control participants underwent diffusion tensor imaging (DTI) examination. The aphasic patients were assessed with standard aphasia tests. The results demonstrated increased axial diffusivity in the RH tracts of the aphasic patients. Patients were then divided according to the extent of the left hemisphere white matter loss. Correlations of language performance with radial diffusivity (RD) in the right hemisphere homologs of the tracts examined were demonstrated for the TFexcF, SLF III, and AF in the subgroup with limited damage to the LH language networks and only with the TFexcF in the subgroup with extensive damage. The results argue in favor of compensatory roles of the right hemisphere tracts in language functions when the LH networks are disrupted.


Author(s):  
Ekaterina V. Pechenkova ◽  
Yana R. Panikratova ◽  
Maria A. Fomina ◽  
Elena A. Mershina ◽  
Daria A. Bazhenova ◽  
...  

Although working memory (WM) is crucial for intellectual abilities, not much is known about its brain underpinnings, especially the structural connectivity. We used diffusion tensor imaging (DTI) to look across the whole brain for the white matter integrity correlates of the individual differences in the reading span (verbal WM capacity during reading) in healthy adults. Right-handed healthy native Russian speakers (N = 67) underwent DTI on a 3T Philips Ingenia scanner. Verbal WM was assessed with the Daneman-Carpenter reading span test (Russian version). Fractional anisotropy maps from each participant were entered into the group tract-based spatial statistics analysis with the reading span as a covariate; the results were TFCE-corrected. After taking into account effects of age, sex, education and handedness, reading span positively correlated with the white matter integrity in multiple sites: the body, the genu and the splenium of corpus callosum; bilateral corona radiata (anterior, posterior, and superior); bilateral superior longitudinal fasciculus; several tracts in the right hemisphere only, including the internal and external capsule; bilateral superior parietal and frontal white matter. Although the left hemisphere is central for verbal processing, we revealed the important role of the right hemisphere white matter for the verbal WM capacity. Our finding indicates that larger verbal working memory span may originate from additional processing resources of the right hemisphere.


Lupus ◽  
2017 ◽  
Vol 26 (5) ◽  
pp. 510-516 ◽  
Author(s):  
N Sarbu ◽  
P Toledano ◽  
A Calvo ◽  
E Roura ◽  
M I Sarbu ◽  
...  

Objectives The objective of this study was to determine whether advanced MRI could provide biomarkers for diagnosis and prognosis in neuropsychiatric systemic lupus erythematosus (NPSLE). Methods Our prospective study included 28 systemic lupus erythematosus (SLE) patients with primary central NPSLE, 22 patients without NPSLE and 20 healthy controls. We used visual scales to evaluate atrophy and white matter hyperintensities, voxel-based morphometry and Freesurfer to measure brain volume, plus diffusion-tensor imaging (DTI) to assess white matter (WM) and gray matter (GM) damage. We compared the groups and correlated MRI abnormalities with clinical data. Results NPSLE patients had less GM and WM than controls ( p = 0.042) in the fronto-temporal regions and corpus callosum. They also had increased diffusivities in the temporal lobe WM ( p < 0.010) and reduced fractional anisotropy in the right frontal lobe WM ( p = 0.018). High clinical scores, longstanding disease, and low serum C3 were associated with atrophy, lower fractional anisotropy and higher diffusivity in the fronto-temporal lobes. Antimalarial treatment correlated negatively with atrophy in the frontal cortex and thalamus; it was also associated with lower diffusivity in the fronto-temporal WM clusters. Conclusions Atrophy and microstructural damage in fronto-temporal WM and GM in NPSLE correlate with severity, activity and the time from disease onset. Antimalarial treatment seems to give some brain-protective effects.


Author(s):  
Ekaterina Pechenkova ◽  
Yana Panikratova ◽  
Maria Fomina ◽  
Elena Mershina ◽  
Daria Bazhenova ◽  
...  

Although working memory (WM) is crucial for intellectual abilities, not much is known about its brain underpinnings, especially the structural connectivity. We used diffusion tensor imaging (DTI) to look across the whole brain for the white matter integrity correlates of the individual differences in the reading span (verbal WM capacity during reading) in healthy adults. Right-handed healthy native Russian speakers (N = 47) underwent DTI on a 3T Philips Ingenia scanner. Verbal WM was assessed with the Daneman-Carpenter reading span test (Russian version). Fractional anisotropy maps from each participant were entered into the group tract-based spatial statistics analysis with the reading span as a covariate; the results were TFCE-corrected. Reading span positively correlated with the white matter integrity in several sites of the right hemisphere: the body and the splenium of corpus callosum; the posterior limb of internal capsule; posterior corona radiata; and superior parietal white matter. Although the left hemisphere is central for verbal processing, we revealed the important role of the right hemisphere white matter for the verbal WM capacity. Our finding indicates that larger verbal working memory span may originate from additional processing resources of the right hemisphere.


2020 ◽  
Vol 17 (4) ◽  
pp. 480-486
Author(s):  
Wei Pu ◽  
Xudong Shen ◽  
Mingming Huang ◽  
Zhiqian Li ◽  
Xianchun Zeng ◽  
...  

Objective: Application of diffusion tensor imaging (DTI) to explore the changes of FA value in patients with Parkinson's disease (PD) with mild cognitive impairment. Methods: 27 patients with PD were divided into PD with mild cognitive impairment (PD-MCI) group (n = 7) and PD group (n = 20). The original images were processed using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS). Results: The average age of pd-mci group was longer than that of PD group, and the course of disease was longer than that of PD group. Compared with PD group, the voxel based analysis-fractional anisotropy (VBA-FA) values of PD-MCI group decreased in the following areas: bilateral frontal lobe, bilateral temporal lobe, bilateral parietal lobe, bilateral subthalamic nucleus, corpus callosum, and gyrus cingula. Tract-based spatial statistics-fractional anisotropy (TBSS-FA) values in PD-MCI group decreased in bilateral corticospinal tract, anterior cingulum, posterior cingulum, fornix tract, bilateral superior thalamic radiation, corpus callosum(genu, body and splenium), bilateral uncinate fasciculus, bilateral inferior longitudinal fasciculus, bilateral superior longitudinal fasciculus, bilateral superior fronto-occipital fasciculus, bilateral inferior fronto-occipital fasciculus, and bilateral parietal-occipital tracts. The mean age of onset in the PD-MCI group was greater than that in the PD group, and the disease course was longer than that in the PD group. Conclusion: DTI-based VBA and TBSS post-processing methods can detect abnormalities in multiple brain areas and white matter fiber tracts in PD-MCI patients. Impairment of multiple cerebral cortex and white matter fiber pathways may be an important causes of cognitive dysfunction in PD-MCI.


2021 ◽  
Author(s):  
Weihong Yuan ◽  
Jonathan Dudley ◽  
Alexis B Slutsky-Ganesh ◽  
James Leach ◽  
Pete Scheifele ◽  
...  

ABSTRACT Introduction Special Weapons and Tactics (SWAT) personnel who practice breaching with blast exposure are at risk for blast-related head trauma. We aimed to investigate the impact of low-level blast exposure on underlying white matter (WM) microstructure based on diffusion tensor imaging (DTI) and neurite orientation and density imaging (NODDI) in SWAT personnel before and after breacher training. Diffusion tensor imaging is an advanced MRI technique sensitive to underlying WM alterations. NODDI is a novel MRI technique emerged recently that acquires diffusion weighted data from multiple shells modeling for different compartments in the microstructural environment in the brain. We also aimed to evaluate the effect of a jugular vein compression collar device in mitigating the alteration of the diffusion properties in the WM as well as its role as a moderator on the association between the diffusion property changes and the blast exposure. Materials and Methods Twenty-one SWAT personnel (10 non-collar and 11 collar) completed the breacher training and underwent MRI at both baseline and after blast exposure. Diffusion weighted data were acquired with two shells (b = 1,000, 2,000 s/mm2) on 3T Phillips scanners. Diffusion tensor imaging metrices, including fractional anisotropy, mean, axial, and radial diffusivity, and NODDI metrics, including neurite density index (NDI), isotropic volume fraction (fiso), and orientation dispersion index, were calculated. Tract-based spatial statistics was used in the voxel-wise statistical analysis. Post hoc analyses were performed for the quantification of the pre- to post-blast exposure diffusion percentage change in the WM regions with significant group difference and for the assessment of the interaction of the relationship between blast exposure and diffusion alteration. Results The non-collar group exhibited significant pre- to post-blast increase in NDI (corrected P &lt; .05) in the WM involving the right internal capsule, the right posterior corona radiation, the right posterior thalamic radiation, and the right sagittal stratum. A subset of these regions showed significantly greater alteration in NDI and fiso in the non-collar group when compared with those in the collar group (corrected P &lt; .05). In addition, collar wearing exhibited a significant moderating effect for the alteration of fiso for its association with average peak pulse pressure. Conclusions Our data provided initial evidence of the impact of blast exposure on WM diffusion alteration based on both DTI and NODDI. The mitigating effect of WM diffusivity changes and the moderating effect of collar wearing suggest that the device may serve as a promising solution to protect WM against blast exposure.


2017 ◽  
Vol 30 (5) ◽  
pp. 454-460
Author(s):  
Dana M Middleton ◽  
Jonathan Y Li ◽  
Steven D Chen ◽  
Leonard E White ◽  
Patricia I Dickson ◽  
...  

Purpose We compared fractional anisotropy and radial diffusivity measurements between pediatric canines affected with mucopolysaccharidosis I and pediatric control canines. We hypothesized that lower fractional anisotropy and higher radial diffusivity values, consistent with dysmyelination, would be present in the mucopolysaccharidosis I cohort. Methods Six canine brains, three affected with mucopolysaccharidosis I and three unaffected, were euthanized at 7 weeks and imaged using a 7T small-animal magnetic resonance imaging system. Average fractional anisotropy and radial diffusivity values were calculated for four white-matter regions based on 100 regions of interest per region per specimen. A 95% confidence interval was calculated for each mean value. Results No difference was seen in fractional anisotropy or radial diffusivity values between mucopolysaccharidosis affected and unaffected brains in any region. In particular, the 95% confidence intervals for mucopolysaccharidosis affected and unaffected canines frequently overlapped for both fractional anisotropy and radial diffusivity measurements. In addition, in some brain regions a large range of fractional anisotropy and radial diffusivity values were seen within the same cohort. Conclusion The fractional anisotropy and radial diffusivity values of white matter did not differ between pediatric mucopolysaccharidosis affected canines and pediatric control canines. Possible explanations include: (a) a lack of white matter tissue differences between mucopolysaccharidosis affected and unaffected brains at early disease stages; (b) diffusion tensor imaging does not detect any existing differences; (c) inflammatory processes such as astrogliosis produce changes that offset the decreased fractional anisotropy values and increased radial diffusivity values that are expected in dysmyelination; and (d) our sample size was insufficient to detect differences. Further studies correlating diffusion tensor imaging findings to histology are warranted.


Sign in / Sign up

Export Citation Format

Share Document