Common Neural Correlates of Intertemporal Choices and Intelligence in Adolescents

2015 ◽  
Vol 27 (2) ◽  
pp. 387-399 ◽  
Author(s):  
Stephan Ripke ◽  
Thomas Hübner ◽  
Eva Mennigen ◽  
Kathrin U. Müller ◽  
Shu-Chen Li ◽  
...  

Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7–15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.

2014 ◽  
Vol 26 (11) ◽  
pp. 2455-2468 ◽  
Author(s):  
Catherine Fassbender ◽  
Sebastien Houde ◽  
Shayla Silver-Balbus ◽  
Kacey Ballard ◽  
Bokyung Kim ◽  
...  

We identify a novel contextual variable that alters the evaluation of delayed rewards in healthy participants and those diagnosed with attention deficit/hyperactivity disorder (ADHD). When intertemporal choices are constructed of monetary outcomes with rounded values (e.g., $25.00), discount rates are greater than when the rewards have nonzero decimal values (e.g., $25.12). This finding is well explained within a dual system framework for temporal discounting in which preferences are constructed from separate affective and deliberative processes. Specifically, we find that round dollar values produce greater positive affect than do nonzero decimal values. This suggests that relative involvement of affective processes may underlie our observed difference in intertemporal preferences. Furthermore, we demonstrate that intertemporal choices with rounded values recruit greater brain responses in the nucleus accumbens to a degree that correlates with the size of the behavioral effect across participants. Our demonstration that a simple contextual manipulation can alter self-control in ADHD has implications for treatment of individuals with disorders of impulsivity. Overall, the decimal effect highlights mechanisms by which the properties of a reward bias perceived value and consequent preferences.


2020 ◽  
Author(s):  
Virginie Patt ◽  
Renee Hunsberger ◽  
Dominoe A. Jones ◽  
Margaret Keane ◽  
Mieke Verfaellie

When faced with intertemporal choices, people typically devalue rewards available in the future compared to rewards more immediately available, a phenomenon known as temporal discounting. Decisions involving intertemporal choices arise daily, with critical impact on health and financial wellbeing. Although many such decisions are “experiential” in that they involve delays and rewards that are experienced in real-time and can inform subsequent choices, most studies have focused on intertemporal choices with hypothetical outcomes (or outcomes delivered after all decisions are made). The present study focused on experiential intertemporal choices. First, a novel intertemporal choice task was developed and validated, using delays experienced in real time and artistic photographs as consumable perceptual rewards. Second, performance on the experiential task was compared to performance on a classic intertemporal choice task with hypothetical outcomes. Involvement of distinct processes across tasks was probed by examining differential relations to trait anxiety and state anxiety. A two-parameter logistic function framework was proposed to fit indifference point data, and was shown to improve upon hyperbolic fit. This approach accounts for individual variability not only in the delay at which an individual switches from choosing the delayed to more immediate option, but also in the slope of that switch. Fit results indicated that the experiential task elicited temporal discounting, with effective trade-off between delay and perceptual reward. Comparison with the hypothetical intertemporal choice task suggested distinct mechanisms: temporal discounting across the two tasks was not correlated; state anxiety affected choice behavior in the experiential task but not in the hypothetical task; and trait anxiety had contrasting effects across the two tasks. These findings were interpreted as reflecting differential engagement of episodic processes in the experiential compared to the hypothetical task, consistent with neural evidence for recruitment of the hippocampus in the former but not in the latter task.


Author(s):  
Charlotte M. Grosskopf ◽  
Nils B. Kroemer ◽  
Shakoor Pooseh ◽  
Franziska Böhme ◽  
Michael N. Smolka

Abstract Introduction Smokers discount delayed rewards steeper than non-smokers or ex-smokers, possibly due to neuropharmacological effects of tobacco on brain circuitry, or lower abstinence rates in smokers with steep discounting. To delineate both theories from each other, we tested if temporal discounting, choice inconsistency, and related brain activity in treatment-seeking smokers (1) are higher compared to non-smokers, (2) decrease after smoking cessation, and (3) predict relapse. Methods At T1, 44 dependent smokers, 29 non-smokers, and 30 occasional smokers underwent fMRI while performing an intertemporal choice task. Smokers were measured before and 21 days after cessation if abstinent from nicotine. In total, 27 smokers, 28 non-smokers, and 29 occasional smokers were scanned again at T2. Discounting rate k and inconsistency var(k) were estimated with Bayesian analysis. Results First, k and var(k) in smokers in treatment were not higher than in non-smokers or occasional smokers. Second, neither k nor var(k) changed after smoking cessation. Third, k did not predict relapse, but high var(k) was associated with relapse during treatment and over 6 months. Brain activity in valuation and decision networks did not significantly differ between groups and conditions. Conclusion Our data from treatment-seeking smokers do not support the pharmacological hypothesis of pronounced reversible changes in discounting behavior and brain activity, possibly due to limited power. Behavioral data rather suggest that differences between current and ex-smokers might be due to selection. The association of choice consistency and treatment outcome possibly links consistent intertemporal decisions to remaining abstinent.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251480
Author(s):  
Virginie M. Patt ◽  
Renee Hunsberger ◽  
Dominoe A. Jones ◽  
Margaret M. Keane ◽  
Mieke Verfaellie

When faced with intertemporal choices, people typically devalue rewards available in the future compared to rewards more immediately available, a phenomenon known as temporal discounting. Decisions involving intertemporal choices arise daily, with critical impact on health and financial wellbeing. Although many such decisions are “experiential” in that they involve delays and rewards that are experienced in real-time and can inform subsequent choices, most studies have focused on intertemporal choices with hypothetical outcomes (or outcomes delivered after all decisions are made). The present study focused on experiential intertemporal choices. First, a novel intertemporal choice task was developed and validated, using delays experienced in real time and artistic photographs as consumable perceptual rewards. Second, performance on the experiential task was compared to performance on a classic intertemporal choice task with hypothetical outcomes. Involvement of distinct processes across tasks was probed by examining differential relations to state and trait anxiety. A two-parameter logistic function framework was proposed to fit indifference point data. This approach accounts for individual variability not only in the delay at which an individual switches from choosing the delayed to more immediate option, but also in the slope of that switch. Fit results indicated that the experiential task elicited temporal discounting, with effective trade-off between delay and perceptual reward. Comparison with the hypothetical intertemporal choice task suggested distinct mechanisms: first, temporal discounting across the two tasks was not correlated; and second, state and trait anxiety both were associated with choice behavior in the experiential task, albeit in distinct ways, whereas neither was significantly associated with choice behavior in the hypothetical task. The engagement of different processes in the experiential compared to hypothetical task may align with neural evidence for the recruitment of the hippocampus in animal but not in classic human intertemporal choice studies.


2020 ◽  
Author(s):  
Kendra Leigh Seaman ◽  
Sade J Abiodun ◽  
Zöe Fenn ◽  
Gregory Russell Samanez-Larkin ◽  
Rui Mata

A number of developmental theories have been proposed that make differential predictions about the links between age and temporal discounting; that is, the valuation of rewards at different points in time. Most empirical studies examining adult age differences in temporal discounting have relied on economic intertemporal choice tasks, which pit choosing a smaller, sooner monetary reward against choosing a larger, later one. Although initial studies using these tasks suggested older adults discount less than younger adults, follow-up studies provided heterogeneous, and thus inconclusive, results. Using an open science approach, we test the replicability of adult age differences in temporal discounting by conducting a preregistered systematic literature search and meta-analysis of adult age differences in intertemporal choice tasks. Across 37 cross-sectional studies (Total N = 104,736), we found no reliable relation between age and temporal discounting (r = -0.081, 95% CI [-0.185, 0.025]). We also found little evidence of publication bias or p-hacking. Exploratory analyses of moderators found no effect of experimental design (e.g., extreme-group vs. continuous age), incentives (hypothetical vs. rewards), amount of delay (e.g., days, weeks, months, or years), or quantification of discounting behavior (e.g., proportion of immediate choices vs. parameters from computational modeling). Additional analyses of 12 participant-level data sets found little support for a nonlinear relation between age and temporal discounting across adulthood. Overall, the results suggest that adult age is not reliably associated with individual differences in temporal discounting. We provide recommendations for future empirical work on temporal discounting across the adult life span.


2011 ◽  
Vol 23 (9) ◽  
pp. 2291-2308 ◽  
Author(s):  
Georg F. Meyer ◽  
Mark Greenlee ◽  
Sophie Wuerger

Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.


2021 ◽  
pp. 1-24
Author(s):  
Ian A. Quillen ◽  
Melodie Yen ◽  
Stephen M. Wilson

In this study, we investigated how the brain responds to task difficulty in linguistic and non-linguistic contexts. This is important for the interpretation of functional imaging studies of neuroplasticity in post-stroke aphasia, because of the inherent difficulty of matching or controlling task difficulty in studies with neurological populations. Twenty neurologically normal individuals were scanned with fMRI as they performed a linguistic task and a non-linguistic task, each of which had two levels of difficulty. Critically, the tasks were matched across domains (linguistic, non-linguistic) for accuracy and reaction time, such that the differences between the easy and difficult conditions were equivalent across domains. We found that non-linguistic demand modulated the same set of multiple demand (MD) regions that have been identified in many prior studies. In contrast, linguistic demand modulated MD regions to a much lesser extent, especially nodes belonging to the dorsal attention network. Linguistic demand modulated a subset of language regions, with the left inferior frontal gyrus most strongly modulated. The right hemisphere region homotopic to Broca’s area was also modulated by linguistic but not non-linguistic demand. When linguistic demand was mapped relative to non-linguistic demand, we also observed domain by difficulty interactions in temporal language regions as well as a widespread bilateral semantic network. In sum, linguistic and non-linguistic demand have strikingly different neural correlates. These findings can be used to better interpret studies of patients recovering from aphasia. Some reported activations in these studies may reflect task performance differences, while others can be more confidently attributed to neuroplasticity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253620
Author(s):  
Canan Beate Schüller ◽  
Ben Jonathan Wagner ◽  
Thomas Schüller ◽  
Juan Carlos Baldermann ◽  
Daniel Huys ◽  
...  

Tourette syndrome is a neurodevelopmental disorder associated with hyperactivity in dopaminergic networks. Dopaminergic hyperactivity in the basal ganglia has previously been linked to increased sensitivity to positive reinforcement and increases in choice impulsivity. In this study, we examine whether this extends to changes in temporal discounting, where impulsivity is operationalized as an increased preference for smaller-but-sooner over larger-but-later rewards. We assessed intertemporal choice in two studies including nineteen adolescents (age: mean[sd] = 14.21[±2.37], 13 male subjects) and twenty-five adult patients (age: mean[sd] = 29.88 [±9.03]; 19 male subjects) with Tourette syndrome and healthy age- and education matched controls. Computational modeling using exponential and hyperbolic discounting models via hierarchical Bayesian parameter estimation revealed reduced temporal discounting in adolescent patients, and no evidence for differences in adult patients. Results are discussed with respect to neural models of temporal discounting, dopaminergic alterations in Tourette syndrome and the developmental trajectory of temporal discounting. Specifically, adolescents might show attenuated discounting due to improved inhibitory functions that also affect choice impulsivity and/or the developmental trajectory of executive control functions. Future studies would benefit from a longitudinal approach to further elucidate the developmental trajectory of these effects.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yang-Yang Zhang ◽  
Lijuan Xu ◽  
Li-Lin Rao ◽  
Lei Zhou ◽  
Yuan Zhou ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Kenny Skagerlund ◽  
Mikael Skagenholt ◽  
Paul J. Hamilton ◽  
Paul Slovic ◽  
Daniel Västfjäll

Abstract This study investigated the neural correlates of the so-called “affect heuristic,” which refers to the phenomenon whereby individuals tend to rely on affective states rather than rational deliberation of utility and probabilities during judgments of risk and utility of a given event or scenario. The study sought to explore whether there are shared regional activations during both judgments of relative risk and relative benefit of various scenarios, thus being a potential candidate of the affect heuristic. Using functional magnetic resonance imaging, we developed a novel risk perception task, based on a preexisting behavioral task assessing the affect heuristic. A whole-brain voxel-wise analysis of a sample of participants (n = 42) during the risk and benefit conditions revealed overlapping clusters in the left insula, left inferior frontal gyrus, and left medial frontal gyrus across conditions. Extraction of parameter estimates of these clusters revealed that activity of these regions during both tasks was inversely correlated with a behavioral measure assessing the inclination to use the affect heuristic. More activity in these areas during risk judgments reflect individuals' ability to disregard momentary affective impulses. The insula may be involved in integrating viscero-somatosensory information and forming a representation of the current emotional state of the body, whereas activity in the left inferior frontal gyrus and medial frontal gyrus indicates that executive processes may be involved in inhibiting the impulse of making judgments in favor of deliberate risk evaluations.


Sign in / Sign up

Export Citation Format

Share Document