scholarly journals Preparing to Stop Action Increases Beta Band Power in Contralateral Sensorimotor Cortex

2019 ◽  
Vol 31 (5) ◽  
pp. 657-668 ◽  
Author(s):  
Vignesh Muralidharan ◽  
Xinze Yu ◽  
Mike X Cohen ◽  
Adam R. Aron

How do we prepare to stop ourselves in the future? Here, we used scalp EEG to test the hypothesis that people prepare to stop by putting parts of their motor system (specifically, here, sensorimotor cortex) into a suppressed state ahead of time. On each trial, participants were cued to prepare to stop one hand and then initiated a bimanual movement. On a minority of trials, participants were instructed to stop the cued hand while continuing quickly with the other. We used a guided multivariate source separation method to examine oscillatory power changes in presumed sensorimotor cortical areas. We observed that, when people prepare to stop a hand, there were above-baseline beta band power increases (12–24 Hz) in contralateral cortex up to a second earlier. This increase in beta band power in the proactive period was functionally relevant because it predicted, trial by trial, the degree of selectivity with which participants subsequently stopped a response but did not relate to movement per se. Thus, preparing to stop particular response channels corresponds to increased beta power from contralateral (sensorimotor) cortex, and this relates specifically to subsequent stopping. These results provide a high temporal resolution and frequency-specific electrophysiological signature of the preparing-to-stop state that is pertinent to future studies of mitigating provocation, including in clinical disorders. The results also highlight the utility of guided multivariate source separation for revealing the cortical dynamics underlying both movement and response suppression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kristina J. Pfeifer ◽  
Justus A. Kromer ◽  
Alexander J. Cook ◽  
Traci Hornbeck ◽  
Erika A. Lim ◽  
...  

BackgroundAbnormal synchronization of neuronal activity in dopaminergic circuits is related to motor impairment in Parkinson’s disease (PD). Vibrotactile coordinated reset (vCR) fingertip stimulation aims to counteract excessive synchronization and induce sustained unlearning of pathologic synaptic connectivity and neuronal synchrony. Here, we report two clinical feasibility studies that examine the effect of regular and noisy vCR stimulation on PD motor symptoms. Additionally, in one clinical study (study 1), we examine cortical beta band power changes in the sensorimotor cortex. Lastly, we compare these clinical results in relation to our computational findings.MethodsStudy 1 examines six PD patients receiving noisy vCR stimulation and their cortical beta power changes after 3 months of daily therapy. Motor evaluations and at-rest electroencephalographic (EEG) recordings were assessed off medication pre- and post-noisy vCR. Study 2 follows three patients for 6+ months, two of whom received daily regular vCR and one patient from study 1 who received daily noisy vCR. Motor evaluations were taken at baseline, and follow-up visits were done approximately every 3 months. Computationally, in a network of leaky integrate-and-fire (LIF) neurons with spike timing-dependent plasticity, we study the differences between regular and noisy vCR by using a stimulus model that reproduces experimentally observed central neuronal phase locking.ResultsClinically, in both studies, we observed significantly improved motor ability. EEG recordings observed from study 1 indicated a significant decrease in off-medication cortical sensorimotor high beta power (21—30 Hz) at rest after 3 months of daily noisy vCR therapy. Computationally, vCR and noisy vCR cause comparable parameter-robust long-lasting synaptic decoupling and neuronal desynchronization.ConclusionIn these feasibility studies of eight PD patients, regular vCR and noisy vCR were well tolerated, produced no side effects, and delivered sustained cumulative improvement of motor performance, which is congruent with our computational findings. In study 1, reduction of high beta band power over the sensorimotor cortex may suggest noisy vCR is effectively modulating the beta band at the cortical level, which may play a role in improved motor ability. These encouraging therapeutic results enable us to properly plan a proof-of-concept study.


2019 ◽  
Author(s):  
Arjen Stolk ◽  
Loek Brinkman ◽  
Mariska J. Vansteensel ◽  
Erik Aarnoutse ◽  
Frans S. S. Leijten ◽  
...  

AbstractThis study uses electrocorticography in humans to assess how alpha- and beta-band rhythms modulate excitability of the sensorimotor cortex during movement selection, as indexed through a psychophysically-controlled movement imagery task. Both rhythms displayed effector-specific modulations, tracked spectral markers of action potentials in the local neuronal population, and showed spatially systematic phase relationships (traveling waves). Yet, alpha- and beta-band rhythms differed in their anatomical and functional properties, were weakly correlated, and traveled along opposite directions across the sensorimotor cortex. Increased alpha-band power in the somatosensory cortex ipsilateral to the selected arm was associated with spatially-unspecific inhibition. Decreased beta-band power over contralateral motor cortex was associated with a focal shift from relative inhibition to excitation. These observations indicate the relevance of both inhibition and disinhibition mechanisms for precise spatiotemporal coordination of neuronal populations during movement selection. Those mechanisms are implemented through the substantially different neurophysiological properties of sensorimotor alpha- and beta-band rhythms.


2019 ◽  
Author(s):  
Wei He ◽  
Thomas Donoghue ◽  
Paul F Sowman ◽  
Robert A Seymour ◽  
Jon Brock ◽  
...  

ABSTRACTAccumulating evidence across species indicates that brain oscillations are superimposed upon an aperiodic 1/f - like power spectrum. Maturational changes in neuronal oscillations have not been assessed in tandem with this underlying aperiodic spectrum. The current study uncovers co-maturation of the aperiodic component alongside the periodic components (oscillations) in spontaneous magnetoencephalography (MEG) data. Beamformer-reconstructed MEG time-series allowed a direct comparison of power in the source domain between 24 children (8.0 ± 2.5 years, 17 males) and 24 adults (40.6 ± 17.4 years, 16 males). Our results suggest that the redistribution of oscillatory power from lower to higher frequencies that is observed in childhood does not hold once the age-related changes in the aperiodic signal are controlled for. When estimating both the periodic and aperiodic components, we found that power increases with age in the beta band only, and that the 1/f signal is flattened in adults compared to children. These results suggest a pattern of co-maturing beta oscillatory power with the aperiodic 1/f signal in typical childhood development.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Preeya Khanna ◽  
Jose M Carmena

Motor cortical beta oscillations have been reported for decades, yet their behavioral correlates remain unresolved. Some studies link beta oscillations to changes in underlying neural activity, but the specific behavioral manifestations of these reported changes remain elusive. To investigate how changes in population neural activity, beta oscillations, and behavior are linked, we recorded multi-scale neural activity from motor cortex while three macaques performed a novel neurofeedback task. Subjects volitionally brought their beta oscillatory power to an instructed state and subsequently executed an arm reach. Reaches preceded by a reduction in beta power exhibited significantly faster movement onset times than reaches preceded by an increase in beta power. Further, population neural activity was found to shift farther from a movement onset state during beta oscillations that were neurofeedback-induced or naturally occurring during reaching tasks. This finding establishes a population neural basis for slowed movement onset following periods of beta oscillatory activity.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Arjen Stolk ◽  
Loek Brinkman ◽  
Mariska J Vansteensel ◽  
Erik Aarnoutse ◽  
Frans SS Leijten ◽  
...  

This study uses electrocorticography in humans to assess how alpha- and beta-band rhythms modulate excitability of the sensorimotor cortex during psychophysically-controlled movement imagery. Both rhythms displayed effector-specific modulations, tracked spectral markers of action potentials in the local neuronal population, and showed spatially systematic phase relationships (traveling waves). Yet, alpha- and beta-band rhythms differed in their anatomical and functional properties, were weakly correlated, and traveled along opposite directions across the sensorimotor cortex. Increased alpha-band power in the somatosensory cortex ipsilateral to the selected arm was associated with spatially-unspecific inhibition. Decreased beta-band power over contralateral motor cortex was associated with a focal shift from relative inhibition to excitation. These observations indicate the relevance of both inhibition and disinhibition mechanisms for precise spatiotemporal coordination of movement-related neuronal populations, and illustrate how those mechanisms are implemented through the substantially different neurophysiological properties of sensorimotor alpha- and beta-band rhythms.


2021 ◽  
Author(s):  
Joshua P Kulasingham ◽  
Christian Brodbeck ◽  
Sheena Khan ◽  
Elisabeth B Marsh ◽  
Jonathan Z Simon

Objective: Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, patients without significant weakness, with small lesions far from sensorimotor cortex, nevertheless exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Methods: Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Results: Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Conclusions: Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex. Significance: Rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jackson N. Cagle ◽  
Joshua K. Wong ◽  
Kara A. Johnson ◽  
Kelly D. Foote ◽  
Michael S. Okun ◽  
...  

Pallidal deep brain stimulation (DBS) is an increasingly used therapy for Parkinson’s disease (PD). Here, we study the effect of DBS on pallidal oscillatory activity as well as on symptom severity in an individual with PD implanted with a new pulse generator (Medtronic Percept system) which facilitates chronic recording of local field potentials (LFP) through implanted DBS lead. Pallidal LFPs were recorded while delivering stimulation in a monopolar configuration using stepwise increments (0.5 mA, every 20 s). At each stimulation amplitude, the power spectral density (PSD) was computed, and beta power (13–30 Hz) was calculated and correlated with the degree of bradykinesia. Pallidal beta power was reduced when therapeutic stimulation was delivered. Beta power correlated to the severity of bradykinesia. Worsening of parkinsonism when excessive stimulation was applied was associated with a rebound in the beta band power. These preliminary results suggest that pallidal beta power might be used as an objective marker of the disease state in PD. The use of brain sensing from implanted neural interfaces may in the future facilitate clinical programming. Detection of rebound could help to optimize benefits and minimize worsening from overstimulation.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


2010 ◽  
Vol 117 (2-3) ◽  
pp. 475
Author(s):  
Remko Van Lutterveld ◽  
Arjan Hillebrand ◽  
Cornelis J. Stam ◽  
René S. Kahn ◽  
Iris E. Sommer

2021 ◽  
Author(s):  
Milou J.L. van Helvert ◽  
Leonie Oostwoud Wijdenes ◽  
Linda Geerligs ◽  
W. Pieter Medendorp

AbstractWhile beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants’ choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion-artifact-free time window, the location of the upcoming target was cued 1000-1500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cueing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cueing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty, similar to target uncertainty, selectively modulates beta-band power during motor planning.New & NoteworthyWhile reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cueing paradigm, that the power in this frequency band, but not in the alpha or theta-band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.


Sign in / Sign up

Export Citation Format

Share Document