scholarly journals Coordinated Reset Vibrotactile Stimulation Induces Sustained Cumulative Benefits in Parkinson’s Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Kristina J. Pfeifer ◽  
Justus A. Kromer ◽  
Alexander J. Cook ◽  
Traci Hornbeck ◽  
Erika A. Lim ◽  
...  

BackgroundAbnormal synchronization of neuronal activity in dopaminergic circuits is related to motor impairment in Parkinson’s disease (PD). Vibrotactile coordinated reset (vCR) fingertip stimulation aims to counteract excessive synchronization and induce sustained unlearning of pathologic synaptic connectivity and neuronal synchrony. Here, we report two clinical feasibility studies that examine the effect of regular and noisy vCR stimulation on PD motor symptoms. Additionally, in one clinical study (study 1), we examine cortical beta band power changes in the sensorimotor cortex. Lastly, we compare these clinical results in relation to our computational findings.MethodsStudy 1 examines six PD patients receiving noisy vCR stimulation and their cortical beta power changes after 3 months of daily therapy. Motor evaluations and at-rest electroencephalographic (EEG) recordings were assessed off medication pre- and post-noisy vCR. Study 2 follows three patients for 6+ months, two of whom received daily regular vCR and one patient from study 1 who received daily noisy vCR. Motor evaluations were taken at baseline, and follow-up visits were done approximately every 3 months. Computationally, in a network of leaky integrate-and-fire (LIF) neurons with spike timing-dependent plasticity, we study the differences between regular and noisy vCR by using a stimulus model that reproduces experimentally observed central neuronal phase locking.ResultsClinically, in both studies, we observed significantly improved motor ability. EEG recordings observed from study 1 indicated a significant decrease in off-medication cortical sensorimotor high beta power (21—30 Hz) at rest after 3 months of daily noisy vCR therapy. Computationally, vCR and noisy vCR cause comparable parameter-robust long-lasting synaptic decoupling and neuronal desynchronization.ConclusionIn these feasibility studies of eight PD patients, regular vCR and noisy vCR were well tolerated, produced no side effects, and delivered sustained cumulative improvement of motor performance, which is congruent with our computational findings. In study 1, reduction of high beta band power over the sensorimotor cortex may suggest noisy vCR is effectively modulating the beta band at the cortical level, which may play a role in improved motor ability. These encouraging therapeutic results enable us to properly plan a proof-of-concept study.

2019 ◽  
Vol 31 (5) ◽  
pp. 657-668 ◽  
Author(s):  
Vignesh Muralidharan ◽  
Xinze Yu ◽  
Mike X Cohen ◽  
Adam R. Aron

How do we prepare to stop ourselves in the future? Here, we used scalp EEG to test the hypothesis that people prepare to stop by putting parts of their motor system (specifically, here, sensorimotor cortex) into a suppressed state ahead of time. On each trial, participants were cued to prepare to stop one hand and then initiated a bimanual movement. On a minority of trials, participants were instructed to stop the cued hand while continuing quickly with the other. We used a guided multivariate source separation method to examine oscillatory power changes in presumed sensorimotor cortical areas. We observed that, when people prepare to stop a hand, there were above-baseline beta band power increases (12–24 Hz) in contralateral cortex up to a second earlier. This increase in beta band power in the proactive period was functionally relevant because it predicted, trial by trial, the degree of selectivity with which participants subsequently stopped a response but did not relate to movement per se. Thus, preparing to stop particular response channels corresponds to increased beta power from contralateral (sensorimotor) cortex, and this relates specifically to subsequent stopping. These results provide a high temporal resolution and frequency-specific electrophysiological signature of the preparing-to-stop state that is pertinent to future studies of mitigating provocation, including in clinical disorders. The results also highlight the utility of guided multivariate source separation for revealing the cortical dynamics underlying both movement and response suppression.


2021 ◽  
Vol 15 ◽  
Author(s):  
Raumin S. Neuville ◽  
Matthew N. Petrucci ◽  
Kevin B. Wilkins ◽  
Ross W. Anderson ◽  
Shannon L. Hoffman ◽  
...  

Background: Resting state beta band (13–30 Hz) oscillations represent pathological neural activity in Parkinson’s disease (PD). It is unknown how the peak frequency or dynamics of beta oscillations may change among fine, limb, and axial movements and different disease phenotypes. This will be critical for the development of personalized closed loop deep brain stimulation (DBS) algorithms during different activity states.Methods: Subthalamic (STN) and local field potentials (LFPs) were recorded from a sensing neurostimulator (Activa® PC + S, Medtronic PLC.) in fourteen PD participants (six tremor-dominant and eight akinetic-rigid) off medication/off STN DBS during 30 s of repetitive alternating finger tapping, wrist-flexion extension, stepping in place, and free walking. Beta power peaks and beta burst dynamics were identified by custom algorithms and were compared among movement tasks and between tremor-dominant and akinetic-rigid groups.Results: Beta power peaks were evident during fine, limb, and axial movements in 98% of movement trials; the peak frequencies were similar during each type of movement. Burst power and duration were significantly larger in the high beta band, but not in the low beta band, in the akinetic-rigid group compared to the tremor-dominant group.Conclusion: The conservation of beta peak frequency during different activity states supports the feasibility of patient-specific closed loop DBS algorithms driven by the dynamics of the same beta band during different activities. Akinetic-rigid participants had greater power and longer burst durations in the high beta band than tremor-dominant participants during movement, which may relate to the difference in underlying pathophysiology between phenotypes.


2019 ◽  
Author(s):  
Arjen Stolk ◽  
Loek Brinkman ◽  
Mariska J. Vansteensel ◽  
Erik Aarnoutse ◽  
Frans S. S. Leijten ◽  
...  

AbstractThis study uses electrocorticography in humans to assess how alpha- and beta-band rhythms modulate excitability of the sensorimotor cortex during movement selection, as indexed through a psychophysically-controlled movement imagery task. Both rhythms displayed effector-specific modulations, tracked spectral markers of action potentials in the local neuronal population, and showed spatially systematic phase relationships (traveling waves). Yet, alpha- and beta-band rhythms differed in their anatomical and functional properties, were weakly correlated, and traveled along opposite directions across the sensorimotor cortex. Increased alpha-band power in the somatosensory cortex ipsilateral to the selected arm was associated with spatially-unspecific inhibition. Decreased beta-band power over contralateral motor cortex was associated with a focal shift from relative inhibition to excitation. These observations indicate the relevance of both inhibition and disinhibition mechanisms for precise spatiotemporal coordination of neuronal populations during movement selection. Those mechanisms are implemented through the substantially different neurophysiological properties of sensorimotor alpha- and beta-band rhythms.


2021 ◽  
Vol 13 ◽  
Author(s):  
Eleonora Maggioni ◽  
Federica Arienti ◽  
Stella Minella ◽  
Francesca Mameli ◽  
Linda Borellini ◽  
...  

Music-based interventions seem to enhance motor, sensory and cognitive functions in Parkinson’s disease (PD), but the underlying action mechanisms are still largely unknown. This electroencephalography (EEG) study aimed to investigate the effective connectivity patterns characterizing PD in the resting state and during music listening. EEG recordings were obtained from fourteen non-demented PD patients and 12 healthy controls, at rest and while listening to three music tracks. Theta- and alpha-band power spectral density and multivariate partial directed coherence were computed. Power and connectivity measures were compared between patients and controls in the four conditions and in music vs. rest. Compared to controls, patients showed enhanced theta-band power and slightly enhanced alpha-band power, but markedly reduced theta- and alpha-band interactions among EEG channels, especially concerning the information received by the right central channel. EEG power differences were partially reduced by music listening, which induced power increases in controls but not in patients. Connectivity differences were slightly compensated by music, whose effects largely depended on the track. In PD, music enhanced the frontotemporal inter-hemispheric communication. Our findings suggest that PD is characterized by enhanced activity but reduced information flow within the EEG network, being only partially normalized by music. Nevertheless, music capability to facilitate inter-hemispheric communication might underlie its beneficial effects on PD pathophysiology and should be further investigated.


Author(s):  
Raumin S. Neuville ◽  
Ross. W. Anderson ◽  
Matthew N. Petrucci ◽  
Jordan E. Parker ◽  
Kevin B. Wilkins ◽  
...  

AbstractBackgroundResting state beta band (13 – 30 Hz) oscillations represent pathological neural activity in Parkinson’s disease (PD). It is unknown whether the peak frequency or dynamics of beta oscillations change among rest, fine, limb and axial movements. This will be critical for the development and feasibility of closed loop deep brain stimulation (DBS) algorithms during resting and movement states.MethodsSubthalamic (STN) local field potentials (LFPs) were recorded from a sensing neurostimulator (Activa® PC+S, Medtronic Inc.,) and synchronized to kinematic recordings in twelve PD participants off medication/off STN DBS during thirty seconds of repetitive alternating finger tapping, wrist-flexion extension, stepping in place, and free walking. Beta power peaks and beta burst dynamics were identified by custom algorithms; beta burst dynamics were compared among rest and movement tasks.ResultsResting state burst durations were longer in a PD beta band, which was elevated above the 1/f physiological spectrum compared to an overlapping band (p < 0.001). Beta power peaks were evident during fine, limb, and axial movements in 98% of movement trials; the peak frequencies were similar during movements and at rest. Burst duration, average and peak power were also similar among the four movement tasks across the group but varied within individuals.ConclusionsProlonged burst durations were a feature of PD bands elevated above and not of PD bands overlapping the 1/f spectrum. The conservation of rest/movement band peak frequency and burst dynamics during different activity states supports the feasibility of successful closed loop DBS algorithms driven by beta burst dynamics during different activities and at rest.HighlightsProlonged beta burst durations represent pathological neural activity in Parkinson’s diseaseBeta band peak frequencies are similar across rest, fine, limb and axial movementsBeta burst dynamics are similar among rest and different movement statesConservation of Parkinsonian neural characteristics across different activity states supports the feasibility of closed loop deep brain stimulation systems in daily life


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Arjen Stolk ◽  
Loek Brinkman ◽  
Mariska J Vansteensel ◽  
Erik Aarnoutse ◽  
Frans SS Leijten ◽  
...  

This study uses electrocorticography in humans to assess how alpha- and beta-band rhythms modulate excitability of the sensorimotor cortex during psychophysically-controlled movement imagery. Both rhythms displayed effector-specific modulations, tracked spectral markers of action potentials in the local neuronal population, and showed spatially systematic phase relationships (traveling waves). Yet, alpha- and beta-band rhythms differed in their anatomical and functional properties, were weakly correlated, and traveled along opposite directions across the sensorimotor cortex. Increased alpha-band power in the somatosensory cortex ipsilateral to the selected arm was associated with spatially-unspecific inhibition. Decreased beta-band power over contralateral motor cortex was associated with a focal shift from relative inhibition to excitation. These observations indicate the relevance of both inhibition and disinhibition mechanisms for precise spatiotemporal coordination of movement-related neuronal populations, and illustrate how those mechanisms are implemented through the substantially different neurophysiological properties of sensorimotor alpha- and beta-band rhythms.


2013 ◽  
Vol 3 ◽  
pp. 261-270 ◽  
Author(s):  
Jobi S. George ◽  
Jon Strunk ◽  
Rachel Mak-McCully ◽  
Melissa Houser ◽  
Howard Poizner ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Mikkel C Vinding ◽  
Panagiota Tsitsi ◽  
Josefine Waldthaler ◽  
Robert Oostenveld ◽  
Martin Ingvar ◽  
...  

Abstract Parkinson’s disease is characterized by a gradual loss of dopaminergic neurons, which is associated with altered neuronal activity in the beta-band (13–30 Hz). Assessing beta-band activity typically involves transforming the time-series to get the power of the signal in the frequency domain. Such transformation assumes that the time-series can be reduced to a combination of steady-state sine- and cosine waves. However, recent studies have suggested that this approach masks relevant biophysical features in the beta-band—for example, that the beta-band exhibits transient bursts of high-amplitude activity. In an exploratory study, we used magnetoencephalography to record beta-band activity from the sensorimotor cortex, to characterize how spontaneous cortical beta bursts manifest in Parkinson’s patients on and off dopaminergic medication, and compare this to matched healthy controls. We extracted the time-course of beta-band activity from the sensorimotor cortex and characterized bursts in the signal. We then compared the burst rate, duration, inter-burst interval and peak amplitude between the Parkinson’s patients and healthy controls. Our results show that Parkinson’s patients off medication had a 5–17% lower beta bursts rate compared to healthy controls, while both the duration and the amplitude of the bursts were the same for healthy controls and medicated state of the Parkinson’s patients. These data thus support the view that beta bursts are fundamental underlying features of beta-band activity, and show that changes in cortical beta-band power in Parkinson’s disease can be explained—primarily by changes in the underlying burst rate. Importantly, our results also revealed a relationship between beta burst rate and motor symptom severity in Parkinson’s disease: a lower burst rate scaled with increased severity of bradykinesia and postural/kinetic tremor. Beta burst rate might thus serve as a neuromarker for Parkinson’s disease that can help in the assessment of symptom severity in Parkinson’s disease or in the evaluation of treatment effectiveness.


2021 ◽  
Author(s):  
Joshua P Kulasingham ◽  
Christian Brodbeck ◽  
Sheena Khan ◽  
Elisabeth B Marsh ◽  
Jonathan Z Simon

Objective: Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, patients without significant weakness, with small lesions far from sensorimotor cortex, nevertheless exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Methods: Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Results: Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Conclusions: Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex. Significance: Rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jackson N. Cagle ◽  
Joshua K. Wong ◽  
Kara A. Johnson ◽  
Kelly D. Foote ◽  
Michael S. Okun ◽  
...  

Pallidal deep brain stimulation (DBS) is an increasingly used therapy for Parkinson’s disease (PD). Here, we study the effect of DBS on pallidal oscillatory activity as well as on symptom severity in an individual with PD implanted with a new pulse generator (Medtronic Percept system) which facilitates chronic recording of local field potentials (LFP) through implanted DBS lead. Pallidal LFPs were recorded while delivering stimulation in a monopolar configuration using stepwise increments (0.5 mA, every 20 s). At each stimulation amplitude, the power spectral density (PSD) was computed, and beta power (13–30 Hz) was calculated and correlated with the degree of bradykinesia. Pallidal beta power was reduced when therapeutic stimulation was delivered. Beta power correlated to the severity of bradykinesia. Worsening of parkinsonism when excessive stimulation was applied was associated with a rebound in the beta band power. These preliminary results suggest that pallidal beta power might be used as an objective marker of the disease state in PD. The use of brain sensing from implanted neural interfaces may in the future facilitate clinical programming. Detection of rebound could help to optimize benefits and minimize worsening from overstimulation.


Sign in / Sign up

Export Citation Format

Share Document