Transcranial direct current stimulation for rehabilitating the brain

2017 ◽  
Vol 59 (11) ◽  
pp. 1100-1100 ◽  
Author(s):  
Bernard Dan
2021 ◽  
Vol 33 (1) ◽  
pp. 146-157
Author(s):  
Chong Zhao ◽  
Geoffrey F. Woodman

It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.


Metallomics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 397-405
Author(s):  
Agata Ziomber ◽  
Artur Dawid Surowka ◽  
Lucyna Antkiewicz-Michaluk ◽  
Irena Romanska ◽  
Pawel Wrobel ◽  
...  

A new methodology for a combined Fe, Cu, Zn and neurometabolite analysis in the brain is reported.


Author(s):  
Jacky Au ◽  
Martin Buschkuehl ◽  
Susanne M. Jaeggi

The aim of this chapter is to contribute to the discussion of the cognitive neuroscience of brain stimulation. In doing so, the authors emphasize work from their own laboratory that focuses both on working memory training and transcranial direct current stimulation. Transcranial direct current stimulation is one of the most commonly used and extensively researched methods of transcranial electrical stimulation. The chapter focuses on implementation of transcranial direct current stimulation to enhance and inform research on working memory training, and not on the underlying mechanisms of transcranial direct current stimulation. Thus, while respecting the intricacies and unknowns of the inner workings of electrical stimulation on the brain, the chapter relies on the premise that transcranial direct current stimulation is able to directly affect the electrophysiological profile of the brain and provides evidence that this in turn can influence behavior given the right parameters.


2019 ◽  
Vol 12 (4) ◽  
pp. 1086-1088 ◽  
Author(s):  
Ashlee M. Hendy ◽  
Helen Macpherson ◽  
Nathan D. Nuzum ◽  
Paul A. Della Gatta ◽  
Sarah E. Alexander ◽  
...  

2019 ◽  
pp. 105971231987997 ◽  
Author(s):  
Atefeh Azarpaikan ◽  
HamidReza Taherii Torbati ◽  
Mehdi Sohrabi ◽  
Reza Boostani ◽  
Majid Ghoshuni

Transcranial direct current stimulation (tDCS) can shift neuronal membrane excitability by applying a weak slow electric current to the brain through the scalp. Attendant electroencephalography (EEG) can provide valuable information about the tDCS mechanisms. This study investigated the effects of anodal tDCS on parietal cortex and cerebellum activity to reveal possible modulation of spontaneous oscillatory brain activity. Timing of the tDCS priming protocol in relation to the intervention especially with respect to bimanual coordination task was also studied. EEG activity was measured in 120 healthy participants before and after sessions of anodal stimulation of the parietal cortex and cerebellum to detect the tDCS-induced alterations. Variations of the delta, theta, alpha, beta, and sensorimotor rhythm (SMR) power bands were analyzed using a MATLAB program. The results showed that anodal parietal and cerebellar tDCS cause changes in brain wave frequencies. They also showed an increase in alpha, beta, and SMR power bands during stimulation sessions for during stimulation parietal group ( p ≤ .01). Also, theta, alpha, beta, and SMR power bands were increased in during stimulation cerebellum group in stimulation sessions and 48 h later ( p ≤ .01). Moreover, the results revealed that the tDCS intervention led to a variety of activations in some areas of the brain. Altogether, the cerebellar tDCS during motor task had a significant improvement in off-line learning.


Author(s):  
Michael Min Wah Leung

Invasive treatments and its associated risks are important factors of concern when the conditions are affecting the nervous system. Transcranial direct current stimulation (tDCS) is a non-invasive technique that stimulates brain areas through the scalp and has excitatory or inhibitory neuromodulatory effects. In the context of stroke patients, recovery is often impaired from the increased inhibition of the damaged area from the unaffected hemisphere. Fujimoto et al. uses dual-hemisphere transcranial direct current stimulation to address this interhemispheric inhibition and demonstrates that stroke patients were able to periodically restore sensory deficits. 


2021 ◽  
Vol 15 ◽  
Author(s):  
Marina Zettin ◽  
Caterina Bondesan ◽  
Giulia Nada ◽  
Matteo Varini ◽  
Danilo Dimitri

Aphasia is an acquired language disorder resulting from damage to portions of the brain which are responsible for language comprehension and formulation. This disorder can involve different levels of language processing with impairments in both oral and written comprehension and production. Over the last years, different rehabilitation and therapeutic interventions have been developed, especially non-invasive brain stimulation (NIBS) techniques. One of the most used NIBS techniques in aphasia rehabilitation is the Transcranial Direct-Current Stimulation (tDCS). It has been proven to be effective in promoting a successful recovery both in the short and the long term after a brain injury. The main strength of tDCS is its feasibility associated with relatively minor side effects, if safely and properly administered. TDCS requires two electrodes, an anode and a cathode, which are generally placed on the scalp. The electrode montage can be either unipolar or bipolar. The main aim of this review is to give an overview of the state of the art of tDCS for the treatment of aphasia. The studies described included patients with different types of language impairments, especially with non-fluent aphasia and in several cases anomia. The effects of tDCS are variable and depend on several factors, such as electrode size and montage, duration of the stimulation, current density and characteristics of the brain tissue underneath the electrodes. Generally, tDCS has led to promising results in rehabilitating patients with acquired aphasia, especially if combined with different language and communication therapies. The selection of the appropriate approach depends on the patients treated and their impaired language function. When used in combination with treatments such as Speech and Language Therapy, Constraint Induced Aphasia Therapy or Intensive Action Treatment, tDCS has generally promoted a better recovery of the impaired functions. In addition to these rehabilitation protocols, Action Observation Therapy, such as IMITAF, appeared to contribute to the reduction of post-stroke anomia. The potential of combining such techniques with tDCS would would therefore be a possibility for further improvement, also providing the clinician with a new action and intervention tool. The association of a tDCS protocol with a dedicated rehabilitation training would favor a generalized long-term improvement of the different components of language.


2019 ◽  
Vol 9 (3) ◽  
pp. 69 ◽  
Author(s):  
Tonya Rich ◽  
Bernadette Gillick

The 10/20 electroencephalogram (EEG) measurements system often guides electrode placement for transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation. One targeted region of the brain is the primary motor cortex (M1) for motor recovery after stroke, among other clinical indications. M1 is identified by C3 and C4 of the 10/20 EEG system yet the reliability of 10/20 EEG measurements by novice research raters is unknown. We investigated the reliability of the 10/20 EEG measurements for C3 and C4 in 25 adult participants. Two novice raters were assessed for inter-rater reliability. Both raters received two hours of instruction from a registered neurodiagnostic technician. One of the raters completed the measurements across two testing days for intra-rater reliability. Relative reliability was determined using the intraclass coefficient (ICC) and absolute reliability. We observed a low to fair inter and intra-rater ICC for motor cortex measurements. The absolute reliability was <1.0 cm by different novice raters and on different days. Although a low error was observed, consideration of the integrity of the targeted region of the brain is critical when designing tDCS interventions in clinical populations who may have compromised brain structure, due to a lesion or altered anatomy.


Sign in / Sign up

Export Citation Format

Share Document