The Neural Basis of Semantic Prediction in Sentence Comprehension

2021 ◽  
pp. 1-22
Author(s):  
Ximing Shao ◽  
Mingyang Li ◽  
Yufang Yang ◽  
Xiaoqing Li ◽  
Zaizhu Han

Abstract Although prediction plays an important role in language comprehension, its precise neural basis remains unclear. This fMRI study investigated whether and how semantic-category-specific and common cerebral areas are recruited in predictive semantic processing during sentence comprehension. We manipulated the semantic constraint of sentence contexts, upon which a tool-related, a building-related, or no specific category of noun is highly predictable. This noun-predictability effect was measured not only over the target nouns but also over their preceding transitive verbs. Both before and after the appearance of target nouns, left anterior supramarginal gyrus was specifically activated for tool-related nouns and left parahippocampal place area was activated specifically for building-related nouns. The semantic-category common areas included a subset of left inferior frontal gyrus during the anticipation of incoming target nouns (activity enhancement for high predictability) and included a wide spread of areas (bilateral inferior frontal gyrus, left superior/middle temporal gyrus, left medial pFC, and left TPJ) during the integration of actually perceived nouns (activity reduction for high predictability). These results indicated that the human brain recruits fine divisions of cortical areas to distinguish different semantic categories of predicted words, and anticipatory semantic processing relies, at least partially, on top–down prediction conducted in higher-level cortical areas.

2012 ◽  
Vol 24 (1) ◽  
pp. 133-147 ◽  
Author(s):  
Carin Whitney ◽  
Marie Kirk ◽  
Jamie O'Sullivan ◽  
Matthew A. Lambon Ralph ◽  
Elizabeth Jefferies

To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus (LIFG), whereas neuropsychological research suggests that damage to a widely distributed network elicits impairments of semantic control. There is also debate about the relationship between semantic and executive control more widely. We used TMS in healthy human volunteers to create “virtual lesions” in structures typically damaged in patients with semantic control deficits: LIFG, left posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS). The influence of TMS on tasks varying in semantic and nonsemantic control demands was examined for each region within this hypothesized network to gain insights into (i) their functional specialization (i.e., involvement in semantic representation, controlled retrieval, or selection) and (ii) their domain dependence (i.e., semantic or cognitive control). The results revealed that LIFG and pMTG jointly support both the controlled retrieval and selection of semantic knowledge. IPS specifically participates in semantic selection and responds to manipulations of nonsemantic control demands. These observations are consistent with a large-scale semantic control network, as predicted by lesion data, that draws on semantic-specific (LIFG and pMTG) and domain-independent executive components (IPS).


2009 ◽  
Vol 21 (4) ◽  
pp. 821-836 ◽  
Author(s):  
Benjamin Straube ◽  
Antonia Green ◽  
Susanne Weis ◽  
Anjan Chatterjee ◽  
Tilo Kircher

In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates the neural basis of memory for bimodal speech and gesture representations. In this fMRI study, 12 participants were presented with video clips showing an actor performing meaningful metaphoric gestures (MG), unrelated, free gestures (FG), and no arm and hand movements (NG) accompanying sentences with an abstract content. After the fMRI session, the participants performed a recognition task. Behaviorally, the participants showed the highest hit rate for sentences accompanied by meaningful metaphoric gestures. Despite comparable old/new discrimination performances (d′) for the three conditions, we obtained distinct memory-related left-hemispheric activations in the inferior frontal gyrus (IFG), the premotor cortex (BA 6), and the middle temporal gyrus (MTG), as well as significant correlations between hippocampal activation and memory performance in the metaphoric gesture condition. In contrast, unrelated speech and gesture information (FG) was processed in areas of the left occipito-temporal and cerebellar region and the right IFG just like the no-gesture condition (NG). We propose that the specific left-lateralized activation pattern for the metaphoric speech–gesture sentences reflects semantic integration of speech and gestures. These results provide novel evidence about the neural integration of abstract speech and gestures as it contributes to subsequent memory performance.


2020 ◽  
Vol 32 (1) ◽  
pp. 36-49 ◽  
Author(s):  
Jin Wang ◽  
Mabel L. Rice ◽  
James R. Booth

Previous studies have found specialized syntactic and semantic processes in the adult brain during language comprehension. Young children have sophisticated semantic and syntactic aspects of language, yet many previous fMRI studies failed to detect this specialization, possibly due to experimental design and analytical methods. In this current study, 5- to 6-year-old children completed a syntactic task and a semantic task to dissociate these two processes. Multivoxel pattern analysis was used to examine the correlation of patterns within a task (between runs) or across tasks. We found that the left middle temporal gyrus showed more similar patterns within the semantic task compared with across tasks, whereas there was no difference in the correlation within the syntactic task compared with across tasks, suggesting its specialization in semantic processing. Moreover, the left superior temporal gyrus showed more similar patterns within both the semantic task and the syntactic task as compared with across tasks, suggesting its role in integration of semantic and syntactic information. In contrast to the temporal lobe, we did not find specialization or integration effects in either the opercular or triangular part of the inferior frontal gyrus. Overall, our study showed that 5- to 6-year-old children have already developed specialization and integration in the temporal lobe, but not in the frontal lobe, consistent with developmental neurocognitive models of language comprehension in typically developing young children.


2015 ◽  
Vol 6 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Mei Jiang ◽  
Li-Xia Yang ◽  
Lin Jia ◽  
Xin Shi ◽  
Hong Wang ◽  
...  

AbstractObjective: The aim of this study is to evaluate variations in cortical activation in early and late Uygur-Chinese bilinguals from the Xinjiang Uygur Autonomous Region of China. Methodology: During a semantic judgment task with visual stimulation by a single Chinese or Uygur word, functional magnetic resonance imaging (fMRI) was performed. The fMRI data regarding activated cortical areas and volumes by both languages were analyzed. Results: The first language (L1) and second language (L2) activated language-related hemispheric regions, including the left inferior frontal and parietal cortices, and L1 specifically activated the left middle temporal gyrus. For both L1 and L2, cortical activation was greater in the left hemisphere, and there was no significant difference in the lateralization index (LI) between the two languages (p > 0.05). Although the total activated cortical areas were larger in early than late bilinguals, the activation volumes were not significantly different. Conclusion: Activated brains areas in early and late fluent bilinguals largely overlapped. However, these areas were more scattered upon presentation of L2 than L1, and L1 had a more specific pattern of activation than L2. For both languages, the left hemisphere was dominant. We found that L2 proficiency level rather than age of acquisition had a greater influence on which brain areas were activated with semantic processing.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Li ◽  
Hongpei Xu ◽  
Shengfu Lu

Background. In the past, studies on the lateralization of the left and right hemispheres of the brain suggested that depression is dominated by the right hemisphere of the brain, but the neural basis of this theory remains unclear. Method. Functional magnetic resonance imaging of the brain was performed in 22 depressive patients and 15 healthy controls. The differences in the mean values of the regional homogeneity (ReHo) of two groups were compared, and the low-frequency amplitudes of these differential brain regions were compared. Results. The results show that compared with healthy subjects, depressive patients had increased ReHo values in the right superior temporal gyrus, right middle temporal gyrus, left inferior temporal gyrus, left middle temporal gyrus, right middle frontal gyrus, triangular part of the right inferior frontal gyrus, orbital part of the right inferior frontal gyrus, right superior occipital gyrus, right middle occipital gyrus, bilateral anterior cingulate, and paracingulate gyri; reduced ReHo values were seen in the right fusiform gyrus, left middle occipital gyrus, left lingual gyrus, and left inferior parietal except in the supramarginal and angular gyri. Conclusions. The results show that regional homogeneity mainly occurs in the right brain, and the overall performance of the brain is such that right hemisphere synchronization is enhanced while left hemisphere synchronization is weakened. ReHo abnormalities in the resting state can predict abnormalities in individual neurological activities that reflect changes in the structure and function of the brain; abnormalities shown with this indicator are the neuronal basis for the phenomenon that the right hemisphere of the brain has a dominant effect on depression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0234219
Author(s):  
Georgette Argiris ◽  
Raffaella I. Rumiati ◽  
Davide Crepaldi

Category-specific impairments witnessed in patients with semantic deficits have broadly dissociated into natural and artificial kinds. However, how the category of food (more specifically, fruits and vegetables) fits into this distinction has been difficult to interpret, given a pattern of deficit that has inconsistently mapped onto either kind, despite its intuitive membership to the natural domain. The present study explores the effects of a manipulation of a visual sensory (i.e., color) or functional (i.e., orientation) feature on the consequential semantic processing of fruits and vegetables (and tools, by comparison), first at the behavioral and then at the neural level. The categorization of natural (i.e., fruits/vegetables) and artificial (i.e., utensils) entities was investigated via cross–modal priming. Reaction time analysis indicated a reduction in priming for color-modified natural entities and orientation-modified artificial entities. Standard event-related potentials (ERP) analysis was performed, in addition to linear classification. For natural entities, a N400 effect at central channel sites was observed for the color-modified condition compared relative to normal and orientation conditions, with this difference confirmed by classification analysis. Conversely, there was no significant difference between conditions for the artificial category in either analysis. These findings provide strong evidence that color is an integral property to the categorization of fruits/vegetables, thus substantiating the claim that feature-based processing guides as a function of semantic category.


2012 ◽  
Vol 24 (8) ◽  
pp. 1766-1778 ◽  
Author(s):  
Maya Visser ◽  
Elizabeth Jefferies ◽  
Karl V. Embleton ◽  
Matthew A. Lambon Ralph

Most contemporary theories of semantic memory assume that concepts are formed from the distillation of information arising in distinct sensory and verbal modalities. The neural basis of this distillation or convergence of information was the focus of this study. Specifically, we explored two commonly posed hypotheses: (a) that the human middle temporal gyrus (MTG) provides a crucial semantic interface given the fact that it interposes auditory and visual processing streams and (b) that the anterior temporal region—especially its ventral surface (vATL)—provides a critical region for the multimodal integration of information. By utilizing distortion-corrected fMRI and an established semantic association assessment (commonly used in neuropsychological investigations), we compared the activation patterns observed for both the verbal and nonverbal versions of the same task. The results are consistent with the two hypotheses simultaneously: Both MTG and vATL are activated in common for word and picture semantic processing. Additional planned, ROI analyses show that this result follows from two principal axes of convergence in the temporal lobe: both lateral (toward MTG) and longitudinal (toward the anterior temporal lobe).


2021 ◽  
Author(s):  
Shujie Geng ◽  
Wanwan Guo ◽  
Kunyu Xu ◽  
Tianye Jia ◽  
Wei Zhou ◽  
...  

Word reading includes a series of cognitive processes that convert low-level visual characteristics to neural representations. However, the consistency of the neural mechanisms for processing these cognitive components across different writing systems in bilinguals remains inconclusive. Here, we explored this question by employing representational similarity analysis with a semantic access task involving Chinese words, English words and Chinese pinyin. Divergent spatial distribution patterns were detected for each type of brain representation across ideographic and alphabetic languages, resulting in 100% classification accuracy. Meanwhile, convergent cognitive components processing was found in the core language-related regions in left hemisphere, including the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas. Broadly, our findings indicated that the neural basis for word recognition of different writing systems in bilinguals was divergent in spatial locations of neural representations but convergent in functions, which supported and enriched the assimilation-accommodation hypothesis.


2020 ◽  
Author(s):  
Rodika Sokoliuk ◽  
Giulio Degano ◽  
Lucia Melloni ◽  
Uta Noppeney ◽  
Damian Cruse

ABSTRACTLanguage comprehension relies on integrating words into progressively more complex structures, like phrases and sentences. This hierarchical structure building is reflected in rhythmic neural activity across multiple timescales in E/MEG (Ding et al., 2016, 2017).How does selective attention across levels of the hierarchy influence the expression of these rhythms?We investigated these questions in an EEG study of 72 healthy human volunteers listening to streams of monosyllabic isochronous English words that were either unrelated (scrambled condition) or composed of four-word-sequences building meaningful sentences (sentential condition). Importantly, there were no physical cues between four-word-sentences but boundaries were marked by syntactic structure and thematic role assignment. Participants were divided into three attention groups: from passive listening (passive group) to attending to individual words (word group) or sentences (sentence group). The passive and word group were naïve to the sentential structure of the stimulus material, while the sentence group were not.We found significant entrainment at word- and sentence rate across all three groups, with sentence entrainment linked to left middle temporal gyrus and right superior temporal gyrus. Goal-directed attention to words did not enhance word-rate-entrainment suggesting that word entrainment relies on largely automatic mechanisms. Importantly, goal-directed attention to sentences relative to words significantly increased sentence-rate-entrainment over left inferior frontal gyrus. This attentional modulation of rhythmic EEG activity at the sentential level highlights the role of attention in integrating individual words into complex linguistic structures.SIGNIFICANCE STATEMENTNeural activity is known to entrain to physical characteristics of auditory stimuli. However, entrainment also occurs with structures lacking physical cues but rather require comprehension of the stimulus’ meaning – for example, entrainment to sentences in speech even without acoustic gaps separating these higher linguistic structures.We investigated how goal-directed attention to low-level (words) and high-level (sentences) linguistic structures influences entrainment strength. Whilst sentence entrainment occurred independently of selective attention, it increased with goal-directed attention towards sentences. Conversely, no such attentional effect was found for word entrainment.While goal-directed attention towards sentences strengthens entrainment, it is no prerequisite for it to occur, suggesting that low attentional effort is required for sentence comprehension, potentially reflecting the importance of speech in humans.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sophie Pauligk ◽  
Sonja A. Kotz ◽  
Philipp Kanske

Abstract Emotional valence is known to influence word processing dependent upon concreteness. Whereas some studies point towards stronger effects of emotion on concrete words, others claim amplified emotion effects for abstract words. We investigated the interaction of emotion and concreteness by means of fMRI and EEG in a delayed lexical decision task. Behavioral data revealed a facilitating effect of high positive and negative valence on the correct processing of abstract, but not concrete words. EEG data yielded a particularly low amplitude response of the late positive component (LPC) following concrete neutral words. This presumably indicates enhanced allocation of processing resources to abstract and emotional words at late stages of word comprehension. In fMRI, interactions between concreteness and emotion were observed within the semantic processing network: the left inferior frontal gyrus (IFG) and the left middle temporal gyrus (MTG). Higher positive or negative valence appears to facilitate semantic retrieval and selection of abstract words. Surprisingly, a reversal of this effect occurred for concrete words. This points towards enhanced semantic control for emotional concrete words compared to neutral concrete words. Our findings suggest fine-tuned integration of emotional valence and concreteness. Specifically, at late processing stages, semantic control mechanisms seem to integrate emotional cues depending on the previous progress of semantic retrieval.


Sign in / Sign up

Export Citation Format

Share Document