Hebb-Type Dynamics is Sufficient to Account for the Inverse Magnification Rule in Cortical Somatotopy

1990 ◽  
Vol 2 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Kamil A. Grajski ◽  
Michael M. Merzenich

The inverse magnification rule in cortical somatotopy is the experimentally derived inverse relationship between cortical magnification (area of somatotopic map representing a unit area of skin surface) and receptive field size (area of restricted skin surface driving a cortical neuron). We show by computer simulation of a simple, multilayer model that Hebb-type synaptic modification subject to competitive constraints is sufficient to account for the inverse magnification rule.

1996 ◽  
Vol 75 (6) ◽  
pp. 2441-2450 ◽  
Author(s):  
D. D. Rasmusson

1. Single neurons in the ventroposterior lateral thalamic nucleus were studied in 10 anesthetized raccoons, 4 of which had undergone amputation of the fourth digit 4-5 mo before recording. Neurons with receptive fields on the glabrous skin of a forepaw digit were examined in response to electrical stimulation of the “on-focus” digit that contained the neuron's receptive field and stimulation of an adjacent, “off-focus” digit. 2. In normal raccoons all neurons responded to on-focus stimulation with an excitation at a short latency (mean 13 ms), whereas only 63% of the neurons responded to off-focus digit stimulation. The off-focus responses had a longer latency (mean 27.2 ms) and a higher threshold than the on-focus responses (800 and 452 microA, respectively). Only 3 of 32 neurons tested with off-focus stimulation had both a latency and a threshold within the range of on-focus values. Inhibition following the excitation was seen in the majority of neurons with both types of stimulation. 3. In the raccoons with digit removal, the region of the thalamus that had lost its major peripheral input (the “deafferented” region) was distinguished from the normal third and fifth digit regions on the basis of the sequence of neuronal receptive fields within a penetration and receptive field size as described previously. 4. Almost all of the neurons in the deafferented region (91%) were excited by stimulation of one or both adjacent digits. The average latency for these responses was shorter (15.3 ms) and the threshold was lower than was the case with off-focus stimulation in control animals. These values were not significantly different from the responses to on-focus stimulation in the animals with digit amputation. 5. These results confirm that reorganization of sensory pathways can be observed at the thalamic level. In addition to the changes in the somatotopic map that have been shown previously with the use of mechanical stimuli, the present paper demonstrates an improvement in several quantitative measures of single-unit responses. Many of these changes suggest that this reorganization could be explained by an increased effectiveness of preexisting, weak connections from the off-focus digits; however, the increase in the proportion of neurons responding to stimulation of adjacent digits may indicate that sprouting of new connections also occurs.


1989 ◽  
Vol 3 (6) ◽  
pp. 509-525 ◽  
Author(s):  
Gislin Dagnlie ◽  
Henk Spekreijse ◽  
Bob van Dijk

AbstractUsing small checkerboard stimulus fields, we have recorded visually evoked potentials (VEPs) in an alert rhesus monkey from an array of 35 electrodes chronically implanted between dura and arachnoid to study mass neuronal activity in striate and peristriate visual cortex. Although the principal purpose of this work was to study in detail cortical mapping in this particular animal for future intracortical recordings, we report here the usefulness of our approach for the non-invasive study of cortical processing, in particular of cortical magnification and receptive-field properties over the central 6° of the visual field.The striate and extrastriate components in the pattern onset VEP both have a double negative-going waveform, with N–P–N peak latencies of 75–100–135 ms and 90–115–160 ms, respectively, for small element sizes and moderate contrasts; latencies may be 5 ms shorter for large element sizes and high contrast. We found little activity at electrode locations over visual areas beyond V2. The waveforms and timing permit some careful speculation concerning intracortical processing and VEP generation.The complex logarithmic form of the retinotopical projection provides a satisfactory model for our data, if a value of 1–1.2° is used for the offset parameter a. Our data suggest that the most abundant receptive-field size in foveal striate cortex has a center diameter of 12′. This size remains constant up to 2° eccentricity, and increases only slowly up to 4°. The smallest receptive-field sizes seem to be independent of eccentricity, throughout the central 4° of Vl, with a value of 4–8′, in agreement with single-cell data reported by Dow et al. (1981) and Van Essen et al. (1984).


2017 ◽  
Vol 17 (10) ◽  
pp. 587
Author(s):  
Ben Harvey ◽  
Jan Brascamp ◽  
Sónia Ferreira ◽  
Miguel Castelo-Branco ◽  
Serge Dumoulin ◽  
...  

NeuroImage ◽  
2018 ◽  
Vol 167 ◽  
pp. 41-52 ◽  
Author(s):  
Maria Fatima Silva ◽  
Jan W. Brascamp ◽  
Sónia Ferreira ◽  
Miguel Castelo-Branco ◽  
Serge O. Dumoulin ◽  
...  

2002 ◽  
Vol 87 (5) ◽  
pp. 2602-2611 ◽  
Author(s):  
Robert N. S. Sachdev ◽  
Kenneth C. Catania

Star-nosed moles have an extraordinary mechanosensory system consisting of 22 densely innervated nasal appendages covered with thousands of sensitive touch domes. A single appendage acts as the fovea and the star is constantly shifted to touch this foveal appendage to objects of interest. Here we investigated the receptive fields on the star and the response properties of 144 neurons in the mole's primary somatosensory cortex (S1). Excitatory receptive fields were defined by recording multiunit activity from the S1 representations of the nasal appendages that form the star, while stimulating the touch domes on the skin surface with a small probe. Receptive fields were among the smallest reported for mammalian glabrous skin, averaging <1 mm2. The smallest receptive fields were found for the fovea representation, corresponding to its greater cortical magnification. Single units were then isolated, primarily from the representation of the somatosensory fovea, and the skin surface was stimulated with a small probe attached to a piezoelectric wafer controlled by a computer interface. The response properties of neurons and the locations of inhibitory surrounds were evaluated with two complementary approaches. In the first set of experiments, single microelectrodes were used to isolate unit activity in S1, and data were collected for stimulation to different areas of the sensory star. In the second set of experiments, a multi-electrode array (4 electrodes spaced at 200 μm in a linear sequence) was used to simultaneously record from isolated units in different cortical areas representing different parts of the sensory periphery. These experiments revealed a short-latency excitatory discharge to stimulation of the fovea followed by a long-lasting suppression of spontaneous activity. Sixty-one percent of neurons responded with an excitatory off response at the end of the stimulus; the remaining 39% of cells did not respond or were inhibited at stimulus offset. Stimulation of areas surrounding the central receptive field often revealed inhibitory surrounds. Forty percent of the neurons that responded to mechanosensory stimulation of the receptive field center were inhibited by stimulation of surrounding areas of skin on the same appendage. In contrast to neurons in rodent barrels, few neurons within a stripe representing an appendage responded to stimulation of neighboring (nonprimary) appendages on the snout. The small receptive fields, short latencies, and inhibitory surrounds are consistent with the star's role in rapidly determining the locations and identities of objects in a complex tactile environment.


1993 ◽  
Vol 90 (23) ◽  
pp. 11142-11146 ◽  
Author(s):  
S Bisti ◽  
C Trimarchi

Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.


1953 ◽  
Vol 4 (4) ◽  
pp. 430 ◽  
Author(s):  
RH Hayman

Occasions of unduly heavy and prolonged rainfall during the period April 1946 – July 1951 resulted in the occurrence of fleece-rot in sheep of the Field Station flock in each of the six years. Data obtained from periodic examinations of the flock have been related to the nature of climatic conditions associated with outbreaks of the disease. They show that when rain occurs in falls of sufficient intensity and frequency to wet sheep to the skin for a period of a week or more, fleece-rot may be expected to develop in some of them. The longer the period for which the sheep are kept wet, the greater the number in a flock which will be affected. Fleece-rot was experimentally induced in four out of five Merino sheep known to be susceptible to the condition, whereas five animals known to be resistant were unaffected by the same treatment. Microscopic examination of skin sections taken from naturally occurring cases revealed the presence of a dermatitis. A similar condition was observed in skin sections from the animals in which fleece-rot was experimentally induced. Young sheep were found to be more susceptible than old. There was no association between degree of wrinkling and susceptibility or between 'grip' and susceptibility. When subjectively-appraised attributes of the fleece were related to the occurrence of fleece-rot, confusing results were obtained. However, when measured fleece data, obtained from a group of Merino sheep which had been under observation for four consecutive years, were considered, it was found that those for clean-scoured yield, wax and suint ratio, and density of fibre population per unit area of skin surface, were related to resistance or susceptibility. Nevertheless, a number of animals were found which were susceptible or resistant to the disease despite the nature of their fleece attributes. Differences in susceptibility were found between families of Merino sheep. These are associated with between-family differences for the fleece attributes found to be important in fleece-rot reaction.


Sign in / Sign up

Export Citation Format

Share Document