Optimizing the Usability of Brain-Computer Interfaces

2018 ◽  
Vol 30 (5) ◽  
pp. 1323-1358 ◽  
Author(s):  
Yin Zhang ◽  
Steve M. Chase

Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.

Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Author(s):  
Gabriella Shull ◽  
Jay Jia Hu ◽  
Justin Buschnyj ◽  
Henry Koon ◽  
Julianna Abel ◽  
...  

The ability to sense neural activity using electrodes has allowed scientists to use this information to temporarily restore movement in paralyzed individuals using brain-computer interfaces (BCI). However, current electrodes do not provide chronic recording of the brain due to the inflammatory response of the immune system caused by the large (∼ 20–80 μm) size of the shanks, and the mechanical mismatch of the shanks relative to the brain. Electrode designs are evolving to use small (< 15 μm) flexible neural probes to minimize inflammatory responses and enable chronic use. However, their flexibility limits the scalability — it is challenging to assemble 3D arrays of such electrodes, to insert the arrays of flexible neural probes into the brain without buckling, and to uniformly distribute them into large areas of the brain. Thus, we created Shape Memory Alloy (SMA) actuated Woven Neural Probes (WNPs). A linear array of 32 flexible insulated microwires were interwoven with SMA wires resulting in an ordered array of parallel electrodes. SMA WNPs were shaped to an initial constricted profile for reliable insertion into a tissue phantom. Following insertion, the SMA wires were used as actuators to unravel the constricted WNP to distribute electrodes across large volumes. We demonstrated that the WNPs could be inserted into the brain without buckling and record neural activity. In separate experiments, we showed that the SMA could mechanically distribute the WNPs via thermally induced actuation. This work thus highlights the potential of actuatable WNPs to be used as a platform for neural recording.


2020 ◽  
Vol 49 (1) ◽  
pp. E2 ◽  
Author(s):  
Kai J. Miller ◽  
Dora Hermes ◽  
Nathan P. Staff

Brain–computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.


2020 ◽  
pp. 311-332
Author(s):  
Nicole Hakim ◽  
Edward Awh ◽  
Edward K. Vogel

Visual working memory allows us to maintain information in mind for use in ongoing cognition. Research on visual working memory often characterizes it within the context of its interaction with long-term memory (LTM). These embedded-processes models describe memory representations as existing in three potential states: inactivated LTM, including all representations stored in LTM; activated LTM, latent representations that can quickly be brought into an active state due to contextual priming or recency; and the focus of attention, an active but sharply limited state in which only a small number of items can be represented simultaneously. This chapter extends the embedded-processes framework of working memory. It proposes that working memory should be defined operationally based on neural activity. By defining working memory in this way, the important theoretical distinction between working memory and LTM is maintained, while still acknowledging that they operate together. It is additionally proposed that active working memory should be further subdivided into at least two subcomponent processes that index item-based storage and currently prioritized spatial locations. This fractionation of working memory is based on recent research that has found that the maintenance of information distinctly relies on item-based representations as well as prioritization of spatial locations. It is hoped that this updated framework of the definition of working memory within the embedded-processes model provides further traction for understanding how we maintain information in mind.


Open Medicine ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. 720-724 ◽  
Author(s):  
Emilia Mikołajewska ◽  
Dariusz Mikołajewski

AbstractNervous system disorders are among the most severe disorders. Significant breakthroughs in contemporary clinical practice may provide brain-computer interfaces (BCIs) and neuroprostheses (NPs). The aim of this article is to investigate the extent to which the ethical considerations in the clinical application of brain-computer interfaces and associated threats are being identified. Ethical considerations and implications may significantly influence further development of BCIs and NPs. Moreover, there is significant public interest in supervising this development. Awareness of BCIs’ and NPs’ threats and limitations allow for wise planning and management in further clinical practice, especially in the area of long-term neurorehabilitation and care.


e-Neuroforum ◽  
2015 ◽  
Vol 21 (4) ◽  
Author(s):  
Niels Birbaumer ◽  
Ujwal Chaudhary

AbstractBrain-computer interfaces (BCI) use neuroelectric and metabolic brain activity to activate peripheral devices and computers without mediation of the motor system. In order to activate the BCI patients have to learn a certain amount of brain control. Self-regulation of brain activity was found to follow the principles of skill learning and instrumental conditioning. This review focuses on the clinical application of brain-computer interfaces in paralyzed patients with locked-in syndrome and completely locked-in syndrome (CLIS). It was shown that electroencephalogram (EEG)-based brain-computer interfaces allow selection of letters and words in a computer menu with different types of EEG signals. However, in patients with CLIS without any muscular control, particularly of eye movements, classical EEG-based brain-computer interfaces were not successful. Even after implantation of electrodes in the human brain, CLIS patients were unable to communicate. We developed a theoretical model explaining this fundamental deficit in instrumental learning of brain control and voluntary communication: patients in complete paralysis extinguish goal-directed responseoriented thinking and intentions. Therefore, a reflexive classical conditioning procedure was developed and metabolic brain signals measured with near infrared spectroscopy were used in CLIS patients to answer simple questions with a “yes” or “no”-brain response. The data collected so far are promising and show that for the first time CLIS patients communicate with such a BCI system using metabolic brain signals and simple reflexive learning tasks. Finally, brain machine interfaces and rehabilitation in chronic stroke are described demonstrating in chronic stroke patients without any residual upper limb movement a surprising recovery of motor function on the motor level as well as on the brain level. After extensive combined BCI training with behaviorally oriented physiotherapy, significant improvement in motor function was shown in this previously intractable paralysis. In conclusion, clinical application of brain machine interfaces in well-defined and circumscribed neurological disorders have demonstrated surprisingly positive effects. The application of BCIs to psychiatric and clinical-psychological problems, however, at present did not result in substantial improvement of complex behavioral disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cornelius Angerhöfer ◽  
Annalisa Colucci ◽  
Mareike Vermehren ◽  
Volker Hömberg ◽  
Surjo R. Soekadar

Severe upper limb paresis can represent an immense burden for stroke survivors. Given the rising prevalence of stroke, restoration of severe upper limb motor impairment remains a major challenge for rehabilitation medicine because effective treatment strategies are lacking. Commonly applied interventions in Germany, such as mirror therapy and impairment-oriented training, are limited in efficacy, demanding for new strategies to be found. By translating brain signals into control commands of external devices, brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) represent promising, neurotechnology-based alternatives for stroke patients with highly restricted arm and hand function. In this mini-review, we outline perspectives on how BCI-based therapy can be integrated into the different stages of neurorehabilitation in Germany to meet a long-term treatment approach: We found that it is most appropriate to start therapy with BCI-based neurofeedback immediately after early rehabilitation. BCI-driven functional electrical stimulation (FES) and BMI robotic therapy are well suited for subsequent post hospital curative treatment in the subacute stage. BCI-based hand exoskeleton training can be continued within outpatient occupational therapy to further improve hand function and address motivational issues in chronic stroke patients. Once the rehabilitation potential is exhausted, BCI technology can be used to drive assistive devices to compensate for impaired function. However, there are several challenges yet to overcome before such long-term treatment strategies can be implemented within broad clinical application: 1. developing reliable BCI systems with better usability; 2. conducting more research to improve BCI training paradigms and 3. establishing reliable methods to identify suitable patients.


Author(s):  
Ahmad Danial Abdul Rahman ◽  
Hanim Hussin

<span>Neurotechnology has led to the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Interfaces (BMIs) which are devices that use brain transmission signal to operate. Electroencephalography (EEG) is one of the recent methods that could retrieve transmission signal of the brain from scalp safely. This paper will discuss the development of Neuroprosthetics limb by using patients’ attention and meditation level to produce movement. The main objective of this project is to restore mobility of patients that have suffered from motor disabilities. This project is carried out by interfacing the data acquisition device which is NeuroSky Mindwaves Headset with the microcontroller to move the prosthetic arm as the output. Arduino Nano microcontroller acts as data processing and a controller to the arm as the output. The prosthetic arm is designed by using SOLIDWORKS software and fabricated by 3D printed. From this project, the user will be able to control the prosthetic arm ranging from rotating the hand to bending the fingers creating a grasp and release gesture.</span>


Sign in / Sign up

Export Citation Format

Share Document