The temporal cortex

2020 ◽  
pp. 253-259
Author(s):  
Edmund T. Rolls

The inferior and middle temporal gyri are involved visual object recognition, with the more dorsal areas involved in face expression, gesture, and motion representation that is useful in social behaviour. The superior temporal cortex is involved in auditory processing. The anterior temporal lobe is involved in semantic representations, for example information about objects, people, and places. Network mechanisms involved in semantic representations are described. The output of this system reaches the inferior frontal gyrus, which on the left is Broca’s area, involved in language production. The concept that the semantics for language are computed in the anterior temporal lobe, and communicates with Broca’s area for speech production, is introduced.

Author(s):  
Peter Indefrey

This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.


2015 ◽  
Vol 6 ◽  
Author(s):  
Rogalsky Corianne ◽  
LaCroix Arianna ◽  
Chen Kuan-Hua ◽  
Anderson Steven ◽  
Damasio Hanna ◽  
...  

2015 ◽  
Vol 112 (9) ◽  
pp. 2871-2875 ◽  
Author(s):  
Adeen Flinker ◽  
Anna Korzeniewska ◽  
Avgusta Y. Shestyuk ◽  
Piotr J. Franaszczuk ◽  
Nina F. Dronkers ◽  
...  

For over a century neuroscientists have debated the dynamics by which human cortical language networks allow words to be spoken. Although it is widely accepted that Broca’s area in the left inferior frontal gyrus plays an important role in this process, it was not possible, until recently, to detail the timing of its recruitment relative to other language areas, nor how it interacts with these areas during word production. Using direct cortical surface recordings in neurosurgical patients, we studied the evolution of activity in cortical neuronal populations, as well as the Granger causal interactions between them. We found that, during the cued production of words, a temporal cascade of neural activity proceeds from sensory representations of words in temporal cortex to their corresponding articulatory gestures in motor cortex. Broca’s area mediates this cascade through reciprocal interactions with temporal and frontal motor regions. Contrary to classic notions of the role of Broca’s area in speech, while motor cortex is activated during spoken responses, Broca’s area is surprisingly silent. Moreover, when novel strings of articulatory gestures must be produced in response to nonword stimuli, neural activity is enhanced in Broca’s area, but not in motor cortex. These unique data provide evidence that Broca’s area coordinates the transformation of information across large-scale cortical networks involved in spoken word production. In this role, Broca’s area formulates an appropriate articulatory code to be implemented by motor cortex.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii212-ii212
Author(s):  
John Andrews ◽  
Nathan Cahn ◽  
Benjamin Speidel ◽  
Valerie Lu ◽  
Mitchel Berger ◽  
...  

Abstract Brodmann’s areas 44/45 of the inferior frontal gyrus (IFG), are the seat of Broca’s area. The Western Aphasia Battery is a commonly used language battery that diagnoses aphasias based on fluency, comprehension, naming and repetition. Broca’s aphasia is defined as low fluency (0-4/10), retained comprehension (4-10/10), and variable deficits in repetition (0-7.9/10) and naming (0-8/10). The purpose of this study was to find anatomic areas associated with Broca’s aphasia. Patients who underwent resective brain surgery in the dominant hemisphere were evaluated with standardized language batteries pre-op, POD 2, and 1-month post-op. The resection cavities were outlined to construct 3D-volumes of interest. These were aligned using an affine transformation to MNI brain space. A voxel-based lesion-symptom mapping (VLSM) algorithm determined areas associated with Broca’s aphasia when incorporated into a resection. Post-op MRIs were reviewed blindly and percent involvement of pars orbitalis, triangularis and opercularis was recorded. 287 patients had pre-op and POD 2 language evaluations and 178 had 1 month post-op language evaluation. 82/287 patients had IFG involvement in resections. Only 5/82 IFG resections led to Broca’s aphasia. 11/16 patients with Broca’s aphasia at POD 2 had no involvement of IFG in resection. 35% of IFG resections were associated with non-specific dysnomia and 36% were normal. By one-month, 76% of patients had normal speech. 80% of patients with Broca’s aphasia at POD 2 improved to normal speech at 1-month, with 20% improved to non-specific dysnomia. The most highly correlated (P< 0.005) anatomic areas with Broca’s aphasia were juxta-sylvian pre- and post-central gyrus extending to supramarginal gyrus. While Broca’s area resections were rarely associated with Broca’s aphasia, juxta-sylvian pre- and post-central gyri extending to the supramarginal gyrus were statistically associated with Broca’s type aphasia when resected. These results have implications for planning resective brain surgery in these presumed eloquent brain areas.


2021 ◽  
pp. 1-11
Author(s):  
Chifaou Abdallah ◽  
Hélène Brissart ◽  
Sophie Colnat-Coulbois ◽  
Ludovic Pierson ◽  
Olivier Aron ◽  
...  

OBJECTIVEIn drug-resistant temporal lobe epilepsy (TLE) patients, the authors evaluated early and late outcomes for decline in visual object naming after dominant temporal lobe resection (TLR) according to the resection status of the basal temporal language area (BTLA) identified by cortical stimulation during stereoelectroencephalography (SEEG).METHODSTwenty patients who underwent SEEG for drug-resistant TLE met the inclusion criteria. During language mapping, a site was considered positive when stimulation of two contiguous contacts elicited at least one naming impairment during two remote sessions. After TLR ipsilateral to their BTLA, patients were classified as BTLA+ when at least one positive language site was resected and as BTLA− when all positive language sites were preserved. Outcomes in naming and verbal fluency tests were assessed using pre- and postoperative (means of 7 and 25 months after surgery) scores at the group level and reliable change indices (RCIs) for clinically meaningful changes at the individual level.RESULTSBTLA+ patients (n = 7) had significantly worse naming scores than BTLA− patients (n = 13) within 1 year after surgery but not at the long-term evaluation. No difference in verbal fluency tests was observed. When RCIs were used, 5 of 18 patients (28%) had naming decline within 1 year postoperatively (corresponding to 57% of BTLA+ and 9% of BTLA− patients). A significant correlation was found between BTLA resection and naming decline.CONCLUSIONSBTLA resection is associated with a specific and early naming decline. Even if this decline is transient, naming scores in BTLA+ patients tend to remain lower compared to their baseline. SEEG mapping helps to predict postoperative language outcome after dominant TLR.


2014 ◽  
Vol 120 (5) ◽  
pp. 1033-1041 ◽  
Author(s):  
Maja Rogić ◽  
Vedran Deletis ◽  
Isabel Fernández-Conejero

Object Until now there has been no reliable stimulation protocol for inducing transient language disruptions while mapping Broca's area. Despite the promising data of only a few studies in which speech arrest and language disturbances have been induced, certain concerns have been raised. The purpose of this study was to map Broca's area by using event-related navigated transcranial magnetic stimulation (nTMS) to generate a modified patterned nTMS protocol. Methods Eleven right-handed subjects underwent nTMS to Broca's area while engaged in a visual object-naming task. Navigated TMS was triggered 300 msec after picture presentation. The modified patterned nTMS protocol consists of 4 stimuli with an interstimulus interval of 6 msec; 8 or 16 of those bursts were repeated with a burst repetition rate of 12 Hz. Prior to mapping of Broca's area, the primary motor cortices (M1) for hand and laryngeal muscles were mapped. The Euclidian distance on MRI was measured between cortical points eliciting transient language disruptions and M1 for the laryngeal muscle. Results On stimulating Broca's area, transient language disruptions were induced in all subjects. The mean Euclidian distance between cortical spots inducing transient language disruptions and M1 for the laryngeal muscle was 17.23 ± 4.73 mm. Conclusions The stimulation paradigm with the modified patterned nTMS protocol was shown to be promising and might gain more widespread use in speech localization in clinical and research applications.


2018 ◽  
Vol 7 (2) ◽  
pp. 172-185
Author(s):  
Nurlaila Nurlaila

This study concerned mainly on the islamic values encountered in human language production and comprehension as a mental process. The production of language of human being positioned in  Broca’s area and comprehension of language is located in Wernike’s area which are located in human left brain. The process of language in human brain is very abstract; it could not be directly seen by naked eyes. It was done by activating some features of the brain such as Broca’s area, Wernike’s area, angular gyrus, motor cortex, etc. Based on psycholinguistics theory, ability to speak or produce meaningful sounds were innate in human. Its meant that human were genetically predisposed to learn and use language. The phenomenon were closely related to islamics values that those facts specifically and delibrately created by God; the Almighty Allah with certain purposes and that regularity was shown in the nature of thing in the earth. This research aims at investigating the islamic values encountered in human language production and comprehension. This is a descriptive qualitative reasearch that the researcher herself functioned as the key instrument. It was found out that there were several kinds of islamic values found in human language production and comprehension namely social, moral, economical, and religious values.   Key Words: Islamic Value, Language Production and Comprehension, Mental Process


2003 ◽  
Vol 15 (7) ◽  
pp. 1019-1027 ◽  
Author(s):  
Yue Wang ◽  
Joan A. Sereno ◽  
Allard Jongman ◽  
Joy Hirsch

Functional magnetic resonance imaging was employed before and after six native English speakers completed lexical tone training as part of a program to learn Mandarin as a second language. Language-related areas including Broca's area, Wernicke's area, auditory cortex, and supplementary motor regions were active in all subjects before and after training and did not vary in average location. Across all subjects, improvements in performance were associated with an increase in the spatial extent of activation in left superior temporal gyrus (Brodmann's area 22, putative Wernicke's area), the emergence of activity in adjacent Brodmann's area 42, and the emergence of activity in right inferior frontal gyrus (Brodmann's area 44), a homologue of putative Broca's area. These findings demonstrate a form of enrichment plasticity in which the early cortical effects of learning a tone-based second language involve both expansion of preexisting language-related areas and recruitment of additional cortical regions specialized for functions similar to the new language functions.


Sign in / Sign up

Export Citation Format

Share Document