Identification, phylogeny and phylogeography of circumfenestrate cyst nematodes (Nematoda: Heteroderidae) as inferred from analysis of ITS-rDNA

Nematology ◽  
2011 ◽  
Vol 13 (7) ◽  
pp. 805-824 ◽  
Author(s):  
Sergei A. Subbotin ◽  
Ignacio Cid Del Prado Vera ◽  
Manuel Mundo-Ocampo ◽  
James G. Baldwin

Abstract Some 134 ITS rRNA gene sequences for circumfenestrate cyst nematodes and two sequences for non-cyst nematodes of the family Heteroderidae, of which 46 were newly obtained, were analysed by phylogenetic and phylogeographic methods. Sequence and phylogenetic analysis combined with known morphological, biological and geographical data allowed the identification, amongst samples original to this study, of several belonging to known valid species as well as others that might be new species. The phylogenetic analysis revealed six major clades for circumfenestrate cyst nematodes: i) Globodera from South and North America; ii) Globodera from Europe, Asia, Africa and Oceania; iii) Paradolichodera; iv) Punctodera; v) Cactodera; and vi) Betulodera. Monophylies of Punctodera, Cactodera and Betulodera were highly supported. The Betulodera clade occupied a basal position on all trees. Phylogeographic analysis suggested a North American origin of Punctoderinae with possible further long distance dispersal to South America, Africa and other regions. Molecular data supported synonymisation of G. achilleae with G. millefolii and of G. hypolysi with G. artemisiae. PCR-RFLP diagnostic profiles for some Globodera and Cactodera species are given. Problems of diagnostics for Globodera species using PCR with specific primers are discussed.

2021 ◽  
Vol 95 ◽  
Author(s):  
M.M. Montes ◽  
J. Barneche ◽  
Y. Croci ◽  
D. Balcazar ◽  
A. Almirón ◽  
...  

Abstract During a parasitological survey of fishes at Iguazu National Park, Argentina, specimens belonging to the allocreadiid genus Auriculostoma were collected from the intestine of Characidium heirmostigmata. The erection of the new species is based on a unique combination of morphological traits as well as on phylogenetic analysis. Auriculostoma guacurarii n. sp. resembles four congeneric species – Auriculostoma diagonale, Auriculostoma platense, Auriculostoma tica and Auriculostoma totonacapanensis – in having smooth and oblique testes, but can be distinguished by a combination of several morphological features, hosts association and geographic distribution. Morphologically, the new species can be distinguished from both A. diagonale and A. platense by the egg size (bigger in the first and smaller in the last); from A. tica by a shorter body length, the genital pore position and the extension of the caeca; and from A. totonacapanensis by the size of the oral and ventral sucker and the post-testicular space. Additionally, one specimen of Auriculostoma cf. stenopteri from the characid Charax stenopterus (Characiformes) from La Plata River, Argentina, was sampled and the partial 28S rRNA gene was sequenced. The phylogenetic analysis revealed that A. guacurarii n. sp. clustered with A. tica and these two as sister taxa to A. cf. stenopteri. The new species described herein is the tenth species in the genus and the first one parasitizing a member of the family Crenuchidae.


2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


2021 ◽  
pp. 269-278
Author(s):  
M. Lenguas Francavilla ◽  
L. Negrete ◽  
A. Martínez-Aquino ◽  
C. Damborenea ◽  
F. Brusa

Girardia Ball, 1974 is the most diverse and widely distributed genus of the family Dugesiidae (Platyhelminthes: Continenticola) in the Neotropical region. Seven out of the 52 species of the genus are known for Argentina. The Somuncurá Plateau is a region in northern Patagonia with several endemic flora and fauna, but little is known about the free-living Platyhelminthes. We describe two new species of Girardia partially inhabiting in sympatry in the Somuncurá Plateau: Girardia somuncura sp. nov. and Girardia tomasi sp. nov. The identification criteria that we followed was an integrative taxonomic approach based on morphological and molecular data. Thus, we used anatomical features focused on the reproductive system, together with a phylogenetic analysis, using a mitochondrial (COI barcode region) genetic marker. This study is the first phylogenetic analysis of the genus Girardia in which we include the southernmost representatives of America here described, thus making it possible to incorporate them in global phylogenies.


2020 ◽  
Vol 70 (11) ◽  
pp. 5665-5670
Author(s):  
Varunya Sakpuntoon ◽  
Jirameth Angchuan ◽  
Chanita Boonmak ◽  
Pannida Khunnamwong ◽  
Noémie Jacques ◽  
...  

Two strains (DMKU-GTCP10-8 and CLIB 1740) representing a novel anamorphic yeast species were isolated from a grease sample collected from a grease trap in Thailand and from an unidentified fungus collected in French Guiana, respectively. On the basis of phylogenetic analysis based on the combined D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Lachancea fermentati CBS 707T was the closely related species with 12.8 % sequence divergence (70 nucleotide substitutions and three gaps in 571 nucleotides) and 28.1 % sequence divergence (93 nucleotide substitutions and 90 gaps in 651 nucleotides) in the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. Phylogenetic analysis based on the concatenated sequences of the five genes including the small subunit rRNA gene, the D1/D2 domain of the LSU rRNA gene, the ITS region, translation elongation factor-1 alpha (TEF1) and RNA polymerase II subunit 2 (RPB2) genes confirmed that the two strains (DMKU-GTCP10-8 and CLIB 1740) were well-separated from other described yeast genera in Saccharomycetaceae. Hence, Savitreea pentosicarens gen. nov., sp. nov. is proposed to accommodate these two strains as members of the family Saccharomycetaceae. The holotype is S. pentosicarens DMKU-GTCP10-8T (ex-type strain TBRC 12159=PYCC 8490; MycoBank number 835044).


Zootaxa ◽  
2021 ◽  
Vol 4926 (2) ◽  
pp. 151-188
Author(s):  
JAVIER FRESNEDA ◽  
VALERIA RIZZO ◽  
JORDI COMAS ◽  
IGNACIO RIBERA

We redefine the genus Troglocharinus Reitter, 1908 based on a phylogenetic analysis with a combination of mitochondrial and molecular data. We recovered the current Speonomites mengeli (Jeannel, 1910) and S. mercedesi (Zariquiey, 1922) as valid, separate species within the Troglocharinus clade, not directly related to Speonomites Jeannel, 1910, a finding corroborated by a detailed study of the male and female genitalia. In consequence, we reinstate Speonomus mercedesi Zariquiey, 1922 stat. nov. as a valid species, transfer both of them to the genus Troglocharinus, T. mengeli (Jeannel, 1910) comb. nov. and T. mercedesi (Zariquiey, 1922) comb. nov., and redescribe the genus. The study of new material from the distribution area of the former S. mengeli revealed the presence of two undescribed species, T. sendrai sp. nov. and T. fadriquei sp. nov., which we describe herein. We designate the lectotype of Speonomus vinyasi Escolà, 1971 to fix its identity, as among its syntypes there are two different species. In agreement with the results of the phylogenetic analyses we establish the synonymy between the genus Speonomites and Pallaresiella Fresneda, 1998 syn. nv. 


2010 ◽  
Vol 24 (6) ◽  
pp. 573 ◽  
Author(s):  
Guillermo Kuschel ◽  
Richard A. B. Leschen

An overview of the taxa of Rhinorhynchinae (Nemonychidae) is presented. A phylogenetic analysis of the 19 extant genera of the Rhinorhynchinae and one fossil genus from the Lower Cretaceous (Cratomacer Zherikhin & Gratshev), based on 29 characters of adults, larvae and host plant associations, shows three monophyletic groups, treated as tribes (Rhinorhynchini, Mecomacerini and Rhynchitomacerini). Primitive associations are unknown for Rhinorhynchinae and early host use diversification included associations with Ranunculaceae (Nemonyx Redtenbacher), Pinaceae (Cimberis Gozis), Nothofagaceae (Rhynchitomacerini) and Podocarpaceae (Rhinorhynchini). While Mecomacerini diversified on Araucariaceae, within Rhinorhynchini there was a single reversal to Araucariaceae and a shift in Atopomacer Kuschel to Pinaceae. Placement of Cratomacer into Mecomacerini is consistent with geological and molecular data that suggest gymnosperms may have been the primitive hosts for the family. Three new genera are described in Rhinorhynchinae: Araucomacer, gen. nov. (type species A. hirticeps Kuschel) from Chile, Idiomacer, gen. nov. (type species I. basicornis, sp. nov.) from New Caledonia, and Zimmiellus, gen. nov. (type species Z. fronto, sp. nov.) from Queensland, Australia, while Stenomacer Kuschel, stat. nov. from Chile is reinstated from synonymy. Seven species are described as new: Atopomacer grandifurca, sp. nov. from Costa Rica and Panama, A. obrieni, sp. nov. from Mexico, A. panamensis, sp. nov. from Panama, A. pini, sp. nov. from Mexico, A. podocarpi, sp. nov. from Venezuela, Basiliogeus dracrycarpi, sp. nov. from western New Guinea and B. inops, sp. nov. from Queensland. Rhynchitomacer rufus Kuschel is a new junior subjective synonym of R. nigritus Kuschel, syn. nov., R. viridulus Kuschel is a new junior subjective synonym of R. flavus Voss, syn. nov. and Stenomacer fuscus Kuschel is a new junior subjective synonym of S. vernus Kuschel, syn. nov. Keys to genera of Rhinorhynchinae and to species of Atopomacer, Rhynchitomacer and Stenomacer are included. Diagnoses of the three extant subfamilies of Nemonychidae are included.


2011 ◽  
Vol 279 (1731) ◽  
pp. 1093-1099 ◽  
Author(s):  
Maria Heikkilä ◽  
Lauri Kaila ◽  
Marko Mutanen ◽  
Carlos Peña ◽  
Niklas Wahlberg

Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous–Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis , a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.


Zootaxa ◽  
2021 ◽  
Vol 4903 (1) ◽  
pp. 140-150
Author(s):  
KONSTANTIN B. GONGALSKY ◽  
PAVEL S. NEFEDIEV ◽  
ILYA S. TURBANOV

A new species of the family Agnaridae, Lucasioides altaicus sp. nov., is described from the Altai Mountains, southwestern Siberia, based both on morphological characters and molecular data. This species is the first record of Lucasioides from Russia, whose location is the northernmost habitat of terrestrial isopods in indigenous habitats presently known to Eurasia. The diagnostic characters of the new species and a preliminary phylogenetic analysis within Agnaridae are provided. 


Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 38 ◽  
Author(s):  
Can Li ◽  
Weishan Zhao ◽  
Dong Zhang ◽  
Runqiu Wang ◽  
Guitang Wang ◽  
...  

Morphological studies of Sicuophora (Syn. Wichtermania) multigranularis Xiao et al., 2002, from the rectum of the frog, Quasipaa spinosa, performed using silver impregnation and scanning electron microscopy, confirmed the following newly recognized features: (1) only one apical suture on the right surface; (2) two naked regions at the posterior end of both the left and the right side of the body. Phylogenetic analysis based on the SSU-rRNA gene showed that S. multigranularis is a sister to a clade comprising all other Clevelandellida, strongly supporting the validity of the genus Sicuophora. This is also the first molecular data obtained for the genus Sicuophora. Because of the lack of molecular data, it will be necessary to obtain more genetic data from the family Sicuophoridae to discuss the question of the taxonomic status of the genus Sicuophora.


2007 ◽  
Vol 57 (4) ◽  
pp. 666-674 ◽  
Author(s):  
P. J. Blackall ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Magne Bisgaard

[Pasteurella] trehalosi is an important pathogen of sheep, being primarily associated with serious systemic infections in lambs but also having an association with pneumonia. The aim of the present investigation was to characterize a broad collection of strains tentatively identified as [P.] trehalosi in order to reclassify and rename this taxon to support improvements in our understanding of the pathogenesis and epidemiology of this important organism. The type strain for [P.] trehalosi, strain NCTC 10370T, was included along with 42 field isolates from sheep (21), cattle (14), goats (1), roe deer (3) and unknown sources (3). An extended phenotypic characterization was performed on all 43 strains. Amplified fragment length polymorphism (AFLP) was also performed on the isolates. Two of the field isolates were subjected to 16S rRNA gene sequencing. These sequences, along with five existing sequences for [P.] trehalosi strains and 12 sequences for other taxa in the family Pasteurellaceae, were subjected to a phylogenetic analysis. All the isolates and the reference strains were identified as [P.] trehalosi. A total of 17 out of 22 ovine isolates produced acid from all glycosides, while only four out of 14 bovine isolates produced acid from all glycosides. All 22 ovine isolates were haemolytic and CAMP-positive, while no other isolate was haemolytic and only two bovine isolates were CAMP-positive. Nineteen AFLP types were found within the [P.] trehalosi isolates. All [P.] trehalosi isolates shared at least 70 % similarity in AFLP patterns. The largest AFLP type included the type strain and 7 ovine field isolates. Phylogenetic analysis indicated that the seven strains studied (two field isolates and the five serovar reference strains) are closely related, with 98.6 % or higher 16S rRNA gene sequence similarity. As both genotypic and phenotypic testing support the separate and distinct nature of these organisms, we propose the transfer of [P.] trehalosi to a new genus, Bibersteinia, as Bibersteinia trehalosi comb. nov. The type strain is NCTC 10370T (=ATCC 29703T). Bibersteinia trehalosi can be distinguished from the existing genera of the family by the observation of only nine characteristics; catalase, porphyrin, urease, indole, phosphatase, acid from dulcitol, (+)-d-galactose, (+)-d-mannose and (+)-d-trehalose.


Sign in / Sign up

Export Citation Format

Share Document