Is Bursaphelenchus mucronatus a weak pathogen to the Japanese red pine?

Nematology ◽  
2006 ◽  
Vol 8 (4) ◽  
pp. 485-489 ◽  
Author(s):  
Kazuyoshi Futai ◽  
Natsumi Kanzaki

AbstractThe pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease. It can invade healthy pine trees through the feeding wound of its vector beetle, Monochamus alternatus, and can enter a dead or dying tree through the vector's oviposition mark. By contrast, B. mucronatus, which is closely related to B. xylophilus but has been considered to have no pathogenicity to pine species, also invades living host trees through the same process as B. xylophilus, although the transmission efficiency is lower than that of B. xylophilus. In order to clarify the reason why Bursaphelenchus mucronatus invades a living host, we inoculated shaded and unshaded host seedlings of Pinus densiflora with B. mucronatus. Bursaphelenchus mucronatus displayed pathogenicity in the host seedlings but only with those that were shaded. In addition, B. mucronatus was recovered from the seedlings that had survived until the end of the experiment. Bursaphelenchus mucronatus seems to survive in the living healthy host tree without causing disease symptoms. These results suggest a mutualistic relationship between B. mucronatus and its vector beetle.

Nematology ◽  
2003 ◽  
Vol 5 (6) ◽  
pp. 843-849 ◽  
Author(s):  
Shota Jikumaru ◽  
Katsumi Togashi

Abstract Bursaphelenchus mucronatus is closely related to Bursaphelenchus xylophilus, the causative agent of pine wilt disease. Both nematodes are transmitted between host pine trees as the fourth-stage dispersal juveniles (JIV) by insect vectors. After the invasion of Japan by B. xylophilus, B. mucronatus, native to Japan, appears to have been replaced in the pine forests during the spread of the disease. To help understand this species replacement, the number of JIV carried by an insect vector (the initial nematode load) was compared between the two nematode species by using the beetle, Monochamus alternatus, in the laboratory. The initial load of B. mucronatus was significantly smaller than that of B. xylophilus although the number of third-stage dispersal juveniles (JIII) concentrated at the pupal chambers did not differ. Statistical analysis showed that the proportion of JIII moulting to JIV was the most important among three components explaining the difference in the initial load of B. mucronatus while the number of JIII concentrated at the pupal chamber was the most important for B. xylophilus. The phoretic affinity between the nematode and its vector is discussed in relation to its role in the species replacement.


Nematology ◽  
2008 ◽  
Vol 10 (5) ◽  
pp. 679-687 ◽  
Author(s):  
Shota Jikumaru ◽  
Katsumi Togashi

Abstract Bursaphelenchus xylophilus is the pathogen associated with pine wilt disease (PWD), an infectious disease of pine trees transmitted by cerambycid beetles of the genus Monochamus. Bursaphelenchus xylophilus is an invasive species, whilst B. mucronatus is a native congener and non-pathogenic to pine trees in Japan. To provide experiment evidence of the biotic and/or abiotic resistance to PWD expansion in a cool area of Japan, we inoculated B. xylophilus into healthy pine trees in a Japanese red pine (Pinus densiflora) stand with the indigenous pine tree-B. mucronatus-insect vector system before invasion of B. xylophilus in 1993 and 1994. Extremely cool air temperature with high precipitation and extremely high air temperature with low precipitation were observed in the summers of the 2 years of inoculation, respectively. The cool summer induced a low incidence of PWD and delayed disease development, resulting in the replacement of B. xylophilus by B. mucronatus within diseased trees and the emergence of Monochamus saltuarius beetles carrying B. mucronatus from the trees 2 years after the inoculation. The hot summer induced disease development in trees in the year of inoculation, but such diseased trees did not become infection sources because of the lack of M. alternatus, whose oviposition was synchronised with the period of disease development in pine trees. This study indicated that biotic factors were important in the inhibitory mechanism in a pine forest against the spread of PWD in the stand. Relevant biotic factors were the lack of M. alternatus and the presence of M. saltuarius carrying B. mucronatus.


Nematology ◽  
2014 ◽  
Vol 16 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Si-Mi Liao ◽  
Satomi Kasuga ◽  
Katsumi Togashi

Bursaphelenchus xylophilus causes pine wilt disease in Pinus trees whereas B. mucronatus has no or little virulence to the trees. Interspecific crossing experiments conducted so far suggest reproductive interference between the two nematode species. Theory predicts that one of the two competing species populations quickly displaces the other through reproductive interference in a frequency-dependent manner. Thus, it is anticipated that B. mucronatus suppresses the virulence of B. xylophilus against pine trees when B. mucronatus heavily outnumber B. xylophilus. To determine the suppressive effects of B. mucronatus, the two nematode species were inoculated simultaneously on 30 3-year-old Pinus thunbergii seedlings at three combinations of different numbers, and B. xylophilus alone was inoculated on 30 other seedlings at the corresponding numbers in early August. Seedlings were observed at intervals of 4 or 6 weeks and two stem sections were sampled from each seedling to determine the density and species composition of nematode populations after death or in December. Inoculation of B. mucronatus significantly retarded the speed of foliage discolouration from 0.170 ± 0.024 week−1 to 0.061 ± 0.017 week−1 and significantly prolonged the survival time of seedlings. Bursaphelenchus mucronatus significantly reduced the nematode density from 1799.7 ± 305.0 to 521.0 ± 148.4 (g dried seedling stem)−1. Analysis of rDNA genotype showed 1846 B xylophilus, no B. mucronatus and one hybrid.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 453
Author(s):  
Zi-Yi Zhang ◽  
Jia-Yin Guan ◽  
Yu-Rou Cao ◽  
Xin-Yi Dai ◽  
Kenneth B. Storey ◽  
...  

We determined the mitochondrial gene sequence of Monochamus alternatus and three other mitogenomes of Lamiinae (Insect: Coleoptera: Cerambycidae) belonging to three genera (Aulaconotus, Apriona and Paraglenea) to enrich the mitochondrial genome database of Lamiinae and further explore the phylogenetic relationships within the subfamily. Phylogenetic trees of the Lamiinae were built using the Bayesian inference (BI) and maximum likelihood (ML) methods and the monophyly of Monochamus, Anoplophora, and Batocera genera was supported. Anoplophora chinensis, An. glabripennis and Aristobia reticulator were closely related, suggesting they may also be potential vectors for the transmission of the pine wood pathogenic nematode (Bursaphelenchus xylophilus) in addition to M. alternatus, a well-known vector of pine wilt disease. There is a special symbiotic relationship between M. alternatus and Bursaphelenchus xylophilus. As the native sympatric sibling species of B. xylophilus, B. mucronatus also has a specific relationship that is often overlooked. The analysis of mitochondrial gene expression aimed to explore the effect of B. mucronatus on the energy metabolism of the respiratory chain of M. alternatus adults. Using RT-qPCR, we determined and analyzed the expression of eight mitochondrial protein-coding genes (COI, COII, COIII, ND1, ND4, ND5, ATP6, and Cty b) between M. alternatus infected by B. mucronatus and M. alternatus without the nematode. Expression of all the eight mitochondrial genes were up-regulated, particularly the ND4 and ND5 gene, which were up-regulated by 4–5-fold (p < 0.01). Since longicorn beetles have immune responses to nematodes, we believe that their relationship should not be viewed as symbiotic, but classed as parasitic.


2011 ◽  
Vol 9 (2) ◽  
pp. 272-275 ◽  
Author(s):  
Albina R. Franco ◽  
Carla Santos ◽  
Mariana Roriz ◽  
Rui Rodrigues ◽  
Marta R. M. Lima ◽  
...  

Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle, is originating severe infections in pine trees. The disease is detected when external symptoms appear (e.g. needle chlorosis), but trees could remain asymptomatic for long periods and serve as a long-term host. The primary goal of this study was to assess the effect of inoculation with an avirulent isolate of B. xylophilus (C14-5) on different Pinus spp. seedlings (P. sylvestris, P. nigra, P. pinea and P. pinaster). At the same time, seedlings were also inoculated with a virulent strain, HF, in order to compare the phenotypic and genomic results of the two types of inoculations. The effect of inoculation was determined in terms of expression of various Pinus genes potentially involved in the response to the disease.The results suggest that P. pinea and P. nigra are more resistant to infection by the nematode than P. sylvestris and P. pinaster. The phenotypic and genetic differences were more marked among P. pinea and P. pinaster.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 265
Author(s):  
Joana M.S. Cardoso ◽  
Luís Fonseca ◽  
Isabel Abrantes

The pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the pine wilt disease (PWD), enters above-ground parts of the tree, migrates through the resin canals and feeds on plant cells causing extensive damage. In order to penetrate the cell wall and establish a parasitic relationship with host trees, the PWN needs to secretea mixture of active cell wall degrading enzymes. In maritime pine, Pinus pinaster, which is high susceptible to PWN, xyloglucan is the major hemicellulosic polysaccharide in primary cells. The xyloglucan backbone is susceptible to hydrolysis by numerous endoglucanases, some of them specific to xyloglucan. However, to completely degrade xyloglucan, all substitutions on the glucan backbones must be released, and l-fucose residues in xyloglucan branches are released by α-l-fucosidases. In the present study, the molecular characterization of two α-l-fucosidases found in PWN secretome was performed. Moreover, a novel α-l-fucosidase was identified and its cDNA and gene sequence were determined. The three-dimensional structures of these α-l-fucosidases were predicted and the transcript levels were analyzed, thus providing new insights into fundamental PWN biology and the possible role of these proteins as cell wall degrading enzymes.


Nematology ◽  
2006 ◽  
Vol 8 (6) ◽  
pp. 869-879 ◽  
Author(s):  
Kazuyoshi Futai ◽  
Natsumi Kanzaki ◽  
Yuko Takeuchi

AbstractPine wilt disease causes ecological and economic damage in Japanese pine forests in spite of intensive effort to protect them from the pine wood nematode, Bursaphelenchus xylophilus. Pine trees infected with B. xylophilus emit a characteristic bouquet of volatile compounds bioactive to the vector beetle of the nematode, Monochamus alternatus, and potentially affecting symptom development inside the trees. To investigate the qualitative and quantitative properties of volatile compounds in the field, we profiled the volatile emissions in two Japanese black pine stands, one naturally suffering from pine wilt disease and the other artificially inoculated with B. xylophilus. In both pine stands, the emission of some terpenoids from the infected trees such as (−)-α-pinene, began to increase in summer, overlapping the oviposition season of the vector beetle, but peaked in the summer and autumn. These data suggest that the beetles may not necessarily depend on the tremendous quantity of volatiles alone when they search for suitable trees on which to oviposit.


Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 653-659 ◽  
Author(s):  
Katsumi Togashi ◽  
Hiroko Maezono ◽  
Koji Matsunaga ◽  
Satoshi Tamaki

AbstractTo determine the relationship between resistance to pine wilt disease and the inhibition of nematode systemic dispersal in Pinus densiflora, a suspension of 200 Bursaphelenchus xylophilus was placed on the upper cut end of 5-cm-long, living or boiled branch sections of 17 clones of pine that had different resistance levels. Significantly more nematodes passed through boiled sections than living sections during 24 h. Living branches of the resistant P. densiflora clone group significantly suppressed the dispersal of B. xylophilus compared with those of the susceptible group, suggesting that the inhibition of nematode systemic dispersal was involved in the resistance mechanism of selected disease-resistant pine clones. However, there was no significant correlation between the resistance class and the mean number of nematodes passing through live branch sections within the resistant clone group. The reason for the lack of correlation is discussed in relation with the resistance mechanism.


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Wei Zhang ◽  
Yongxia Li ◽  
Long Pan ◽  
Xuan Wang ◽  
Yuqian Feng ◽  
...  

AbstractPinewood nematode, Bursaphelenchus xylophilus, a pine parasitic nematode, poses a serious threat to its host pine forests globally. When dispersal-stage larvae 4 (dauer, DL4) of B. xylophilus enters the new pine, it moults into propagative adult (dauer recovery) and reproduces quickly to kill the host pine. Here, we found pine chemical volatiles, rather than the common dauer recovery factors of nematodes (e.g. suitable temperatures, nutrient availability or density), promote B. xylophilus dauer recovery. The results showed that volatilization of chemicals in host pines could attract DL4 and promote DL4 recovery. To identify which chemicals promote this process, we determined the stimulated activity of the main volatiles of pines including six monoterpenes and two sesquiterpenes. Results showed that all the six monoterpenes promoted dauer recovery, especially β-pinene and β-myrcene, but the two sesquiterpenes have no effect on the transformation. Furthermore, β-pinene performed gradient effects on dauer recovery. We hypothesized that when DL4 infect pine trees, the pine volatiles released from the feeding wounds are used as chemical signals for DL4 transformation to adult to reproduce and rapidly kill the pines. Our study identified the B. xylophilus dauer recovery chemical signal and may contribute to preventing pine wilt disease.


Sign in / Sign up

Export Citation Format

Share Document