Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test

2008 ◽  
Vol 15 (2-3) ◽  
pp. 335-349 ◽  
Author(s):  
Tim Huber ◽  
Jörg Müssig
1993 ◽  
Vol 2 (5) ◽  
pp. 096369359300200 ◽  
Author(s):  
H.D. Wagner ◽  
S. Ling

An energy balance approach is proposed for the single fibre composite (or fragmentation) test, by which the degree of fibre-matrix bonding is quantified by means of the interfacial energy, rather than the interfacial shear strength, as a function of the fibre geometrical and mechanical characteristics, the stress transfer length, and the debonding length. The validity of the approach is discussed using E-glass fibres embedded in epoxy, both in the dry state and in the presence of hot distilled water.


2008 ◽  
Vol 262 (1) ◽  
pp. 170-181 ◽  
Author(s):  
Stefan Reich ◽  
Ahmed ElSabbagh ◽  
Leif Steuernagel

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hanna M. Brodowsky ◽  
Anne Hennig

Abstract Natural fibre–reinforced composites are more sustainable than other composites with respect to the raw materials. Their properties are attractive due to high specific properties, and especially so wherever high damping is valued. As the interphase between fibre and matrix is the region of highest stresses, a strong bond between fibre and matrix is essential for any composites’ properties. The present study compares two methods of determining the interfacial shear stress in natural fibre–reinforced composites: the single fibre fragmentation test and the single fibre pullout test. The studied composites are flax fibre reinforced epoxy. For a variety of fibre–matrix interaction, the fibres are treated with a laccase enzyme and dopamine, which is known to improve the fibre–matrix shear strength. In the observed samples, single fibre fragmentation test data, i.e. of fracture mode and fragment length, scatter when compared to pullout data. In single fibre pullout tests, the local interfacial shear strength showed a 30% increase in the laccase-treated samples, compared to the control samples. The method also permitted an evaluation of the frictional stress occurring after surface failure.


2011 ◽  
Vol 471-472 ◽  
pp. 1034-1039 ◽  
Author(s):  
Zulkiflle Leman ◽  
S.M. Sapuan ◽  
S. Suppiah

Polymer composites using natural fibres as the reinforcing agents have found their use in many applications. However, they do suffer from a few limitations, due to the hydrophilicity of the natural fibres which results in low compatibility with the hydrophobic polymer matrices. This paper aims to determine the best sugar palm (Arenga pinnata) fibre surface treatment to improve the fibre-matrix interfacial adhesion. Fibre surface modifications were carried out by water retting process where the fibres were immersed in sea water, pond water and sewage water for the period of 30 days. The test samples were fabricated by placing a single fibre in an unsaturated polyester resin. Single-fibre pull-out tests showed that freshwater-treated fibres possessed the highest interfacial shear strength, followed by untreated fibres, sewage water-treated fibres, and sea water-treated fibres. Further surface analyses of the samples were performed using a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectroscopy (EDS) system.


Sign in / Sign up

Export Citation Format

Share Document