Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests

1998 ◽  
Vol 29 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Shiqiang Deng ◽  
Lin Ye ◽  
Yiu-Wing Mai ◽  
Hong-Yuan Liu
1993 ◽  
Vol 2 (5) ◽  
pp. 096369359300200 ◽  
Author(s):  
H.D. Wagner ◽  
S. Ling

An energy balance approach is proposed for the single fibre composite (or fragmentation) test, by which the degree of fibre-matrix bonding is quantified by means of the interfacial energy, rather than the interfacial shear strength, as a function of the fibre geometrical and mechanical characteristics, the stress transfer length, and the debonding length. The validity of the approach is discussed using E-glass fibres embedded in epoxy, both in the dry state and in the presence of hot distilled water.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1837
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna ◽  
Massimo Messori

The present work investigated the possibility to use wet blue (WB) leather wastes as natural reinforcing fibers within different polymer matrices. After their preparation and characterization, WB fibers were melt-mixed at 10 wt.% with poly(lactic acid) (PLA), polyamide 12 (PA12), thermoplastic elastomer (TPE), and thermoplastic polyurethane (TPU), and the obtained samples were subjected to rheological, thermal, thermo-mechanical, and viscoelastic analyses. In parallel, morphological properties such as fiber distribution and dispersion, fiber–matrix adhesion, and fiber exfoliation phenomena were analyzed through a scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) to evaluate the relationship between the compounding process, mechanical responses, and morphological parameters. The PLA-based composite exhibited the best results since the Young modulus (+18%), tensile strength (+1.5%), impact (+10%), and creep (+5%) resistance were simultaneously enhanced by the addition of WB fibers, which were well dispersed and distributed in and significantly branched and interlocked with the polymer matrix. PA12- and TPU-based formulations showed a positive behavior (around +47% of the Young modulus and +40% of creep resistance) even if the not-optimal fiber–matrix adhesion and/or the poor de-fibration of WB slightly lowered the tensile strength and elongation at break. Finally, the TPE-based sample exhibited the worst performance because of the poor affinity between hydrophilic WB fibers and the hydrophobic polymer matrix.


2015 ◽  
Vol 815 ◽  
pp. 643-648
Author(s):  
Yin Zhu ◽  
Jiong Xin Zhao

The effect of heat setting methods on the structures and mechanical properties of high strength polyvinyl alcohol (PVA) fibre is studied in this article. The microstructure and mechanical properties of heat treated PVA fibre is investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and single fibre electronic tensile strength tester. Results show that the heat setting method with constant tension is a good heat setting method which can largely enhance the tensile strength of PVA fibre. During the heat setting process, the mechanical properties of PVA fibre are greatly affected by the temperature, tension and setting time. When the temperature is 220°C, tension is 5cN/dtex and setting time is 90sec, the tensile strength of PVA fibre increases from 12.0cN/dtex to 16.4cN/dtex in compare with the PVA fibre without heat setting


Sign in / Sign up

Export Citation Format

Share Document