Functional morphology of the gut of the tropical house gecko Hemidactylus mabouia (Squamata: Gekkonidae)

2014 ◽  
Vol 64 (3) ◽  
pp. 217-237 ◽  
Author(s):  
Sirlene Souza Rodrigues-Sartori ◽  
Katiane de Oliveira Pinto Coelho Nogueira ◽  
Alípio dos Santos Rocha ◽  
Clóvis Andrade Neves

The purpose of this study was to characterize morphophysiological aspects of the gut of the gecko Hemidactylus mabouia, a predator species of tiny arthropods. Fourteen adult specimen of the gecko H. mabouia were euthanized and fragments of their small and large intestines were collected and processed according to routine methods for anatomical, topological, histological and histochemical analyses. Histological sections were stained with toluidine blue or submitted to techniques for identification of argyrophil and argentaffin endocrine cells, glycoconjugates and alkaline phosphatase activity. The small intestine of H. mabouia is much more extensive and convolute than the large intestine. There are subtle regional differences along the small intestine, as the tubule diameter and height of the inner folds noticeably decrease from the proximal toward the distal segment. There is no caecum between the small and large intestines and the abrupt change in the caliber marks the transition of the small intestine into the large intestine. The large intestine consists of a very dilated proximal segment followed by a short distal segment. The villi are absent, but the tall folds in the internal covering of the small intestine constitute important amplifier structures of the digestive and absorptive area. No mucosal or submucosal glands were observed along the intestine. The epithelial lining of the entire intestine is simple columnar with enterocytes, mucus-secreting cells and endocrine cells. The enterocytes are abundant in the small intestine and the mucus-secreting cells are abundant in the large intestine, which reflects the functional role of these organs. In sum, H. mabouia has small intestine that is longer than the large intestine, which is consistent with the species being a carnivorous reptile.

2018 ◽  
Vol 6 (4) ◽  
pp. 101 ◽  
Author(s):  
Yuri Yamamoto ◽  
Yumiko Nakanishi ◽  
Shinnosuke Murakami ◽  
Wanping Aw ◽  
Tomoya Tsukimi ◽  
...  

Commensal microbiota colonize the surface of our bodies. The inside of the gastrointestinal tract is one such surface that provides a habitat for them. The gastrointestinal tract is a long organ system comprising of various parts, and each part possesses various functions. It has been reported that the composition of intestinal luminal metabolites between the small and large intestine are different; however, comprehensive metabolomic and commensal microbiota profiles specific to each part of the gastrointestinal lumen remain obscure. In this study, by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolome and 16S rRNA gene-based microbiome analyses of specific pathogen-free (SPF) and germ-free (GF) murine gastrointestinal luminal profiles, we observed the different roles of commensal microbiota in each part of the gastrointestinal tract involved in carbohydrate metabolism and nutrient production. We found that the concentrations of most amino acids in the SPF small intestine were higher than those in the GF small intestine. Furthermore, sugar alcohols such as mannitol and sorbitol accumulated only in the GF large intestine, but not in the SPF large intestine. On the other hand, pentoses, such as arabinose and xylose, gradually accumulated from the cecum to the colon only in SPF mice, but were undetected in GF mice. Correlation network analysis between the gastrointestinal microbes and metabolites showed that niacin metabolism might be correlated to Methylobacteriaceae. Collectively, commensal microbiota partially affects the gastrointestinal luminal metabolite composition based on their metabolic dynamics, in cooperation with host digestion and absorption.


1985 ◽  
Vol 54 (2) ◽  
pp. 429-435 ◽  
Author(s):  
P. J. Williams ◽  
T. G. Taylor

1. The role of bacterial, dietary and intestinal phytases (EC 3. 1. 3. 8) in the hydrolysis of phytate was investigated in the golden hamster and rat by assaying phytase in the small intestine and by measuring the disappearance of phytate from the stomach and large intestine, using chromium oxide as an insoluble solid-phase marker.2. It was confirmed that an active phytase was present in the proximal third of the small intestine of the rat but the enzyme was undetectable in the hamster.3. Extensive bacterial breakdown of phytate occurred in the pregastric pouch and true stomach of the hamster with both phytase-containing and phytase-free diets, with phytate digestibilities in the true stomach ranging from 0.69–0.90, confirming that the hamster can be regarded as a pseudo-ruminant.4. With a phytase-free diet, the digestibility of phytate in the stomach of the rat was very low (0.05) but with a wheat-based diet substantial breakdown of phytate occurred (digestibility up to 0.49), presumably under the influence of the cereal phytase.5. Intestinal phytase did not appear to be of great significance in the rat but some further hydrolysis of the residual phytate probably occurred in the large intestine of both species by bacterial phytase.


1954 ◽  
Vol 44 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Constance Higginbottom ◽  
D. W. F. Wheater

1. The numbers ofStreptococcus bovisin the rumen of a heifer and a steer, each having a permanent rumen fistula, were shown to remain relatively constant within the range 105to 107per ml. rumen liquid (strained rumen contents) over a period of more than 3 years.2. The numbers ofStrep. boviswere little affected by the change in diet from stall-feeding (oats, beans, hay and straw) to grass or vice versa.3. There was a slight increase in the numbers ofStrep. bovisfollowing each meal when the animals were stall-fed, but no appreciable variation in numbers throughout the day when the animals were at grass.4.Strep. bovishas also been isolated from the rumen of freshly slaughtered cattle and sheep from different parts of the country, from the rumen of goats and calves and from the faeces of cattle, goats and in small numbers associated withStrep. equinusfrom horse dung.5.Strep. boviswas found in the contents of the omasum, large intestine and caecum of three cattle, but in the small intestine of only one of these animals. Very small numbers ofStrep. boviswere detected in the abomasal contents of only four of twelve animals examined.6. The characteristics of these strains ofStrep. bovishave been described. The synthesis of an iodophilic polysaccharide byStrep. bovishas been demonstrated.7. A possible role ofStrep. bovisin the decomposition of starch and other carbohydrates in the rumen is discussed.


2019 ◽  
Author(s):  
Mahfud Mahfud ◽  
Ihwan

Excessive hunting and poaching for commercial purpose of Varanus salvator in Indonesia can cause a decline in this animal population. However, the scientific information of this animal especially about the biologic of organ system is rarely reported. Therefore, this case opens up opportunities for researching, which aims to study the anatomy of digestive tract of water monitor macroscopically. This research has been conducted in Biology Laboratory, University of Muhammadiyah Kupang for 5 months from March to August 2016. The digestive organ of this animal that has been preserved in alcohol 70% was obtained before from two males of water monitors. Preservation process: the animal were anesthetized, exsanguinated, and fixated in 4 paraformaldehyde by tissue perfusion method. Observations were performed to the visceral site and morphometrical of digestive tract. The resulted data was analysed descriptively and presented in tables and figures. The digestive tract of water monitor consist of esophagus, stomach, small intestine, large intestine and cloaca. The dimension of each organ is different based on its structures and functions. The esophagus of water monitor connects the mouth cavity and the stomach and also as the entrance of food to the stomach. Water monitor stomach were found in cranial part of abdomen, in left side of liver. The small intestine was longer than stomach and it is a winding muscular tube in abdomen in posterior side of liver. The large intestine consist of colon and cloaca, while cecum was not found. This channel was extend lateromedially in abdomen to cloaca between left and right kidneys. The cloaca was the end of digestive tract which excreted feces and urine. From this research, we can conclude that the digestive tract of water monitor consists of esophagus, stomach, small intestine, and large intestine. It’s difficult to differentiate small intestine and large intestine because there are no cecum.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 23
Author(s):  
M. Carmen Louzao ◽  
Paula Abal ◽  
Celia Costas ◽  
Toshiyuki Suzuki ◽  
Ryuichi Watanabe ◽  
...  

Okadaic acid (OA) and its main structural analogs dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine lipophilic phycotoxins distributed worldwide that can be accumulated by edible shellfish and can cause diarrheic shellfish poisoning (DSP). In order to study their toxicokinetics, mice were treated with different doses of OA, DTX1, or DTX2 and signs of toxicity were recorded up to 24 h. Toxin distribution in the main organs from the gastrointestinal tract was assessed by liquid chromatography-mass spectrometry (LC/MS/MS) analysis. Our results indicate a dose-dependency in gastrointestinal absorption of these toxins. Twenty-four hours post-administration, the highest concentration of toxin was detected in the stomach and, in descending order, in the large intestine, small intestine, and liver. There was also a different toxicokinetic pathway between OA, DTX1, and DTX2. When the same toxin doses are compared, more OA than DTX1 is detected in the small intestine. OA and DTX1 showed similar concentrations in the stomach, liver, and large intestine tissues, but the amount of DTX2 is much lower in all these organs, providing information on DSP toxicokinetics for human safety assessment.


2021 ◽  
pp. 137-141
Author(s):  
Ayaka Takasu ◽  
Takashi Ikeya ◽  
Katsuyuki Fukuda

The incidence of press-through pack (PTP) ingestion has been increasing. In many cases, the ingested PTP is lodged in the esophagus. Here, we report a case of endoscopic removal of a PTP from the anal canal. An 89-year-old man with mild dementia presented with a 3-day history of anal pain. On digital rectal examination, we felt a hard and sharp object, which could not be manually removed due to its shape. Therefore, it was removed endoscopically. We inserted an endoscope with a large-caliber soft oblique cap and observed the PTP in the anal canal. It was successfully removed using grasping forceps. The patient was stable, with only mild anal fissures, and no serious complications such as perforation and bleeding were observed. It is generally recognized that a PTP that reaches the large intestine is naturally expelled. Even if a PTP could pass through the pylorus or the small intestine, it could still be difficult to discharge naturally from the anus without discomfort or pain, as in this case.


2004 ◽  
Vol 121 (2) ◽  
pp. 273
Author(s):  
A. Tavakkolizadeh ◽  
A.P. Ramsanahie ◽  
L.L. Levitsky ◽  
M.J. Zinner ◽  
S.W. Ashley ◽  
...  

2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


Sign in / Sign up

Export Citation Format

Share Document