scholarly journals Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation

2017 ◽  
Vol 30 (1) ◽  
pp. 65-90 ◽  
Author(s):  
Séamas Weech ◽  
Nikolaus F. Troje

Studies of the illusory sense of self-motion elicited by a moving visual surround (‘vection’) have revealed key insights about how sensory information is integrated. Vection usually occurs after a delay of several seconds following visual motion onset, whereas self-motion in the natural environment is perceived immediately. It has been suggested that this latency relates to the sensory mismatch between visual and vestibular signals at motion onset. Here, we tested three techniques with the potential to reduce sensory mismatch in order to shorten vection onset latency: noisy galvanic vestibular stimulation (GVS) and bone conducted vibration (BCV) at the mastoid processes, and body vibration applied to the lower back. In Experiment 1, we examined vection latency for wide field visual rotations about the roll axis and applied a burst of stimulation at the start of visual motion. Both GVS and BCV reduced vection latency by two seconds compared to the control condition, whereas body vibration had no effect on latency. In Experiment 2, the visual stimulus rotated about the pitch, roll, or yaw axis and we found a similar facilitation of vection by both BCV and GVS in each case. In a control experiment, we confirmed that air-conducted sound administered through headphones was not sufficient to reduce vection onset latency. Together the results suggest that noisy vestibular stimulation facilitates vection, likely due to an upweighting of visual information caused by a reduction in vestibular sensory reliability.

2005 ◽  
Vol 15 (4) ◽  
pp. 185-195 ◽  
Author(s):  
W.G. Wright ◽  
P. DiZio ◽  
J.R. Lackner

We evaluated visual and vestibular contributions to vertical self motion perception by exposing subjects to various combinations of 0.2 Hz vertical linear oscillation and visual scene motion. The visual stimuli presented via a head-mounted display consisted of video recordings of the test chamber from the perspective of the subject seated in the oscillator. In the dark, subjects accurately reported the amplitude of vertical linear oscillation with only a slight tendency to underestimate it. In the absence of inertial motion, even low amplitude oscillatory visual motion induced the perception of vertical self-oscillation. When visual and vestibular stimulation were combined, self-motion perception persisted in the presence of large visual-vestibular discordances. A dynamic visual input with magnitude discrepancies tended to dominate the resulting apparent self-motion, but vestibular effects were also evident. With visual and vestibular stimulation either spatially or temporally out-of-phase with one another, the input that dominated depended on their amplitudes. High amplitude visual scene motion was almost completely dominant for the levels tested. These findings are inconsistent with self-motion perception being determined by simple weighted summation of visual and vestibular inputs and constitute evidence against sensory conflict models. They indicate that when the presented visual scene is an accurate representation of the physical test environment, it dominates over vestibular inputs in determining apparent spatial position relative to external space.


2017 ◽  
Vol 118 (3) ◽  
pp. 1650-1663 ◽  
Author(s):  
Jan Churan ◽  
Johannes Paul ◽  
Steffen Klingenhoefer ◽  
Frank Bremmer

In the natural world, self-motion always stimulates several different sensory modalities. Here we investigated the interplay between a visual optic flow stimulus simulating self-motion and a tactile stimulus (air flow resulting from self-motion) while human observers were engaged in a distance reproduction task. We found that adding congruent tactile information (i.e., speed of the air flow and speed of visual motion are directly proportional) to the visual information significantly improves the precision of the actively reproduced distances. This improvement, however, was smaller than predicted for an optimal integration of visual and tactile information. In contrast, incongruent tactile information (i.e., speed of the air flow and speed of visual motion are inversely proportional) did not improve subjects’ precision indicating that incongruent tactile information and visual information were not integrated. One possible interpretation of the results is a link to properties of neurons in the ventral intraparietal area that have been shown to have spatially and action-congruent receptive fields for visual and tactile stimuli. NEW & NOTEWORTHY This study shows that tactile and visual information can be integrated to improve the estimates of the parameters of self-motion. This, however, happens only if the two sources of information are congruent—as they are in a natural environment. In contrast, an incongruent tactile stimulus is still used as a source of information about self-motion but it is not integrated with visual information.


2014 ◽  
Vol 112 (10) ◽  
pp. 2481-2491 ◽  
Author(s):  
Sebastian M. Frank ◽  
Oliver Baumann ◽  
Jason B. Mattingley ◽  
Mark W. Greenlee

The central hub of the cortical vestibular network in humans is likely localized in the region of posterior lateral sulcus. An area characterized by responsiveness to visual motion has previously been described at a similar location and named posterior insular cortex (PIC). Currently it is not known whether PIC processes vestibular information as well. We localized PIC using visual motion stimulation in functional magnetic resonance imaging (fMRI) and investigated whether PIC also responds to vestibular stimuli. To this end, we designed an MRI-compatible caloric stimulation device that allowed us to stimulate bithermally with hot temperature in one ear and simultaneously cold temperature in the other or with warm temperatures in both ears for baseline. During each trial, participants indicated the presence or absence of self-motion sensations. We found activation in PIC during periods of self motion when vestibular stimulation was carried out with minimal visual input. In combined visual-vestibular stimulation area PIC was activated in a similar fashion during congruent and incongruent stimulation conditions. Our results show that PIC not only responds to visual motion but also to vestibular stimuli related to the sensation of self motion. We suggest that PIC is part of the cortical vestibular network and plays a role in the integration of visual and vestibular stimuli for the perception of self motion.


Perception ◽  
1994 ◽  
Vol 23 (7) ◽  
pp. 753-762 ◽  
Author(s):  
Ian P Howard ◽  
Laura Childerson

Three types of visual information contribute to the sense of self orientation with respect to gravity: visual polarity of objects with a distinct top and bottom, the principal vertical and horizontal lines of the visual environment, and visual motion. Three visual displays were designed to investigate the contribution of each visual feature to illusory self tilt: a large sphere lined with dots, a cubic room lined with dots, and a furnished room with floor and ceiling. In experiment 1 the dotted room and the furnished room were tilted to various angles about the roll axis of the erect subject who set a visual line and an unseen rod to the apparent vertical. In the dotted room, settings were made either with respect to the nearest surface to the horizontal or with respect to the nearest diagonal of the room. In the furnished room, settings were made with respect to the nearest horizontal wall but not with respect to diagonals. In experiment 2 each of the three displays was rotated at constant velocity and subjects' responses were classified into four categories: illusory self tilt at a constant angle, alternating self tilt with the body becoming erect each time a surface became horizontal, continuous head-over-heels self rotation, and a feeling that the body was supine. Almost all responses were of constant tilt in the sphere. Constant and alternating tilt were the most common responses in the dotted room. In the furnished room 60% of subjects experienced full head-over-heels self rotation.


2015 ◽  
Vol 32 ◽  
Author(s):  
SABRINA PITZALIS ◽  
PATRIZIA FATTORI ◽  
CLAUDIO GALLETTI

AbstractIn macaque, it has long been known since the late nineties that the medial parieto-occipital sulcus (POS) contains two regions, V6 and V6A, important for visual motion and action. While V6 is a retinotopically organized extrastriate area, V6A is a broadly retinotopically organized visuomotor area constituted by a ventral and dorsal subdivision (V6Av and V6Ad), both containing arm movement-related cells active during spatially directed reaching movements. In humans, these areas have been mapped only in recent years thanks to neuroimaging methods. In a series of brain mapping studies, by using a combination of functional magnetic resonance imaging methods such as wide-field retinotopy and task-evoked activity, we mapped human areas V6 (Pitzalis et al., 2006) and V6Av (Pitzalis et al., 2013d) retinotopically and defined human V6Ad functionally as a pointing-selective region situated anteriorly in the close proximity of V6Av (Tosoni et al., 2014). Like in macaque, human V6 is a motion area (e.g., Pitzalis et al., 2010, 2012, 2013a,b,c), while V6Av and V6Ad respond to pointing movements (Tosoni et al., 2014). The retinotopic organization (when present), anatomical position, neighbor relations, and functional properties of these three areas closely resemble those reported for macaque V6 (Galletti et al., 1996, 1999a), V6Av, and V6Ad (Galletti et al., 1999b; Gamberini et al., 2011). We suggest that information on objects in depth which are translating in space, because of the self-motion, is processed in V6 and conveyed to V6A for evaluating object distance in a dynamic condition such as that created by self-motion, so to orchestrate the eye and arm movements necessary to reach or avoid static and moving objects in the environment.


2011 ◽  
Vol 589 (4) ◽  
pp. 807-813 ◽  
Author(s):  
Rebecca J. St George ◽  
Richard C. Fitzpatrick

2006 ◽  
Vol 95 (5) ◽  
pp. 3199-3207 ◽  
Author(s):  
Jean-Claude Lepecq ◽  
Catherine De Waele ◽  
Sophie Mertz-Josse ◽  
Claudine Teyssèdre ◽  
Patrice Tran Ba Huy ◽  
...  

The present study aimed at determining whether vestibular inputs contribute to the perception of the direction of self-motion. This question was approached by investigating the effects of binaural bipolar galvanic vestibular stimulation (GVS) on visually induced self-motion (i.e., vection) in healthy subjects. Stationary seated subjects were submitted to optokinetic stimulation inducing either forward or upward linear vection. While perceiving vection, they were administered trapezoidal GVS of different intensities and ramp durations. Subjects indicated the shape and direction of their perceived self-motion path throughout the experiment by a joystick, and after each trial by the manipulation of a 3D mannequin. Results show that: 1) GVS induced alterations of the path of vection; 2) these alterations occurred more often after GVS onset than after GVS offset; 3) the occurrence of vection path alterations after GVS onset depended on the intensity of GVS but not on the steepness of the GVS variation; 4) the vection path deviated laterally according to either an oblique or a curved path; and 5) the vection path deviated toward the cathode side after GVS onset. It is the first time that vestibular information, already known to contribute to the induction of vection, is shown to modify self-motion perception during the course of vection.


2005 ◽  
Vol 17 (3) ◽  
pp. 463-469 ◽  
Author(s):  
Michel Guerraz ◽  
Brian L. Day

Recent experiments have shown that the visual channel of balance control is susceptible to cognitive influence. When a subject is aware that an upcoming visual disturbance is likely to arise from an external agent, that is, movement of the visual environment, rather than from self-motion, the whole-body response is suppressed. Here we ask whether this is a principle that generalizes to the vestibular channel of balance control. We studied the whole-body response to a pure vestibular perturbation produced by galvanic vestibular stimulation (GVS; 0.5 mA for 3 sec). In the first experiment, subjects stood with vision occluded while stimuli were delivered either by the subject himself (self-triggered) or by the experimenter. For the latter, the stimulus was delivered either without warning (unpredictable) or at a fixed interval following an auditory cue (predictable). Results showed that GVS evoked a whole-body response that was not affected by whether the stimulus was self-triggered, predictable, or unpredictable. The same results were obtained in a second experiment in which subjects had access to visual information during vestibular stimulation. We conclude that the vestibular-evoked balance response is automatic and immune to knowledge of the source of the perturbation and its timing. We suggest the reason for this difference between visual and vestibular channels stems from a difference in their natural abilities to signal self-motion. The vestibular system responds to acceleration of the head in space and therefore always signals self-motion. Visual flow, on the other hand, is ambiguous in that it signals object motion and eye motion, as well as self-motion.


2010 ◽  
Vol 19 (6) ◽  
pp. 544-556 ◽  
Author(s):  
Michiteru Kitazaki ◽  
Takuya Kimura

Human postural control is a multimodal process involving visual and vestibular information. The aim of the present study was to measure individual differences in the contributions of vision and vestibular senses to postural control, and to investigate if the individual weights could be modulated by long-term adaptation to visual motion or galvanic vestibular stimulation (GVS). Since GVS is a less expensive technique than a motion platform and can be wearable, it is a promising virtual reality (VR) technology. We measured the postural sway of observers induced by a visual motion or GVS before and after a 7-day adaptation task. We divided participants into four groups. In visual adaptation groups, visual motions were presented to either enhance voluntary body movement (enhancing vision group) or inhibit voluntary body movement (inhibiting vision group). In GVS adaptation groups, GVS was applied to enhance voluntary body movement (enhancing GVS group) or inhibit voluntary body movement (inhibiting GVS group). The adaptation to enhancing body-movement-yoked visual motion decreased the GVS-induced postural sway at a low motion frequency. The adaptation to the enhancing GVS slightly increased the GVS-induced postural sway and decreased the visually-induced sway at a low motion frequency. The adaptation to the inhibiting GVS increased the GVS-induced postural sway and decreased the visually-induced sway at a high motion frequency. These data suggest that long-term adaptation can modify weights of vision and vestibular senses to control posture. These findings can be applied to training or rehabilitation systems of postural control and also to adaptive virtual-reality systems.


Sign in / Sign up

Export Citation Format

Share Document