The Role of Hand Movement in Spatial Serial Order Memory

2020 ◽  
Vol 33 (3) ◽  
pp. 313-335
Author(s):  
Yangke Zhao ◽  
Chuansheng Chen ◽  
Xiuying Qian

Abstract Research on serial order memory has traditionally used tasks where participants passively view the items. A few studies that included hand movement showed that such movement interfered with serial order memory. In the present study of three experiments, we investigated whether and how hand movements improved spatial serial order memory. Experiment 1 showed that manual tracing (i.e., hand movements that traced the presentation of stimuli on the modified eCorsi block tapping task) improved the performance of backward recall as compared to no manual tracing (the control condition). Experiment 2 showed that the facilitation effect resulted from voluntary hand movements and could not be achieved via passive viewing of another person’s manual tracing. Experiment 3 showed that it was the temporal, not the spatial, signal within manual tracing that facilitated spatial serial memory.

2018 ◽  
Vol 30 (12) ◽  
pp. 1846-1857 ◽  
Author(s):  
Daniel Baldauf

In two EEG experiments, we studied the role of visual attention during the preparation of manual movements around an obstacle. Participants performed rapid hand movements to a goal position avoiding a central obstacle either on the left or right side, depending on the pitch of the acoustical go signal. We used a dot probe paradigm to analyze the deployment of spatial attention in the visual field during the motor preparation. Briefly after the go signal but still before the hand movement actually started, a visual transient was flashed either on the planned pathway of the hand (congruent trials) or on the opposite, movement-irrelevant side (incongruent trials). The P1/N1 components that were evoked by the onset of the dot probe were enhanced in congruent trials where the visual transient was presented on the planned path of the hand. The results indicate that, during movement preparation, attention is allocated selectively to the planned trajectory the hand is going to take around the obstacle.


2012 ◽  
Vol 220 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Stefan Ladwig ◽  
Christine Sutter ◽  
Jochen Müsseler

When using a tool, proximal action effects (e.g., the hand movement on a digitizer tablet) and distal action effects (e.g., the cursor movement on a display) often do not correspond to or are even in conflict with each other. In the experiments reported here, we examined the role of proximal and distal action effects in a closed loop task of sensorimotor control. Different gain factors perturbed the relation between hand movements on the digitizer tablet and cursor movements on a display. In the experiments, the covert hand movement was held constant, while the cursor amplitude on the display was shorter, equal, or longer, and vice versa in the other condition. When participants were asked to replicate the hand movement without visual feedback, hand amplitudes varied in accordance with the displayed amplitudes. Adding a second transformation (Experiment 1: 90°-rotation of visual feedback, Experiment 2: 180°-rotation of visual feedback) reduced these aftereffects only when the discrepancy between hand movement and displayed movement was obvious. In conclusion, distal action effects assimilated proximal action effects when the proprioceptive/tactile feedback showed a feature overlap with the visual feedback on the display.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


2020 ◽  
Vol 132 (5) ◽  
pp. 1358-1366
Author(s):  
Chao-Hung Kuo ◽  
Timothy M. Blakely ◽  
Jeremiah D. Wander ◽  
Devapratim Sarma ◽  
Jing Wu ◽  
...  

OBJECTIVEThe activation of the sensorimotor cortex as measured by electrocorticographic (ECoG) signals has been correlated with contralateral hand movements in humans, as precisely as the level of individual digits. However, the relationship between individual and multiple synergistic finger movements and the neural signal as detected by ECoG has not been fully explored. The authors used intraoperative high-resolution micro-ECoG (µECoG) on the sensorimotor cortex to link neural signals to finger movements across several context-specific motor tasks.METHODSThree neurosurgical patients with cortical lesions over eloquent regions participated. During awake craniotomy, a sensorimotor cortex area of hand movement was localized by high-frequency responses measured by an 8 × 8 µECoG grid of 3-mm interelectrode spacing. Patients performed a flexion movement of the thumb or index finger, or a pinch movement of both, based on a visual cue. High-gamma (HG; 70–230 Hz) filtered µECoG was used to identify dominant electrodes associated with thumb and index movement. Hand movements were recorded by a dataglove simultaneously with µECoG recording.RESULTSIn all 3 patients, the electrodes controlling thumb and index finger movements were identifiable approximately 3–6-mm apart by the HG-filtered µECoG signal. For HG power of cortical activation measured with µECoG, the thumb and index signals in the pinch movement were similar to those observed during thumb-only and index-only movement, respectively (all p > 0.05). Index finger movements, measured by the dataglove joint angles, were similar in both the index-only and pinch movements (p > 0.05). However, despite similar activation across the conditions, markedly decreased thumb movement was observed in pinch relative to independent thumb-only movement (all p < 0.05).CONCLUSIONSHG-filtered µECoG signals effectively identify dominant regions associated with thumb and index finger movement. For pinch, the µECoG signal comprises a combination of the signals from individual thumb and index movements. However, while the relationship between the index finger joint angle and HG-filtered signal remains consistent between conditions, there is not a fixed relationship for thumb movement. Although the HG-filtered µECoG signal is similar in both thumb-only and pinch conditions, the actual thumb movement is markedly smaller in the pinch condition than in the thumb-only condition. This implies a nonlinear relationship between the cortical signal and the motor output for some, but importantly not all, movement types. This analysis provides insight into the tuning of the motor cortex toward specific types of motor behaviors.


2017 ◽  
Vol 21 (3) ◽  
pp. 585-597 ◽  
Author(s):  
BRENDAN STUART WEEKES

Short-term memory (STM) is required for second language learning. However, it is not clear what components of STM are necessary for the acquisition and lexicalisation of new written words. Studies suggest that memory for serial order is a critical cognitive process in spoken word acquisition although correlated mechanisms such as executive control also play a role. In this study, bilingual Cantonese–English speakers who are learning written expert words in a non-native language were tested over a one year period in their first year of instruction. Written word lexicalisation was measured using lexical decision and spelling to dictation tasks. Results showed measures of executive control (Stroop performance) and serial order memory capacity predict recognition and recall of written expert words at different stages. Whereas serial order memory predicts improvements to lexical decision accuracy, executive control predicts spelling to dictation performance after one year. The conclusion is that STM processes do constrain written word lexicalisation in a second language. However, executive control and serial order memory capacity have differential effects during word lexicalisation.


2009 ◽  
Vol 32 (3-4) ◽  
pp. 328-329 ◽  
Author(s):  
Daniel Algom

AbstractThe type of processing of numerical dimensions varies greatly and is governed by context. Considering this flexibility in tandem with a fuzzy demarcation line between automatic and intentional processes, it is suggested that testing the effect of notation should not be confined to automatic processing, in particular to passive viewing. Recent behavioral data satisfying the authors' stipulations reveal a considerable, though perhaps not exclusive, core of common abstract processing.


Sign in / Sign up

Export Citation Format

Share Document