scholarly journals The Effect of Motion Direction and Eccentricity on Vection, VR Sickness and Head Movements in Virtual Reality

2021 ◽  
pp. 1-40
Author(s):  
Katharina Margareta Theresa Pöhlmann ◽  
Julia Föcker ◽  
Patrick Dickinson ◽  
Adrian Parke ◽  
Louise O’Hare

Abstract Virtual Reality (VR) experienced through head-mounted displays often leads to vection, discomfort and sway in the user. This study investigated the effect of motion direction and eccentricity on these three phenomena using optic flow patterns displayed using the Valve Index. Visual motion stimuli were presented in the centre, periphery or far periphery and moved either in depth (back and forth) or laterally (left and right). Overall vection was stronger for motion in depth compared to lateral motion. Additionally, eccentricity primarily affected stimuli moving in depth with stronger vection for more peripherally presented motion patterns compared to more central ones. Motion direction affected the various aspects of VR sickness differently and modulated the effect of eccentricity on VR sickness. For stimuli moving in depth far peripheral presentation caused more discomfort, whereas for lateral motion the central stimuli caused more discomfort. Stimuli moving in depth led to more head movements in the anterior–posterior direction when the entire visual field was stimulated. Observers demonstrated more head movements in the anterior–posterior direction compared to the medio-lateral direction throughout the entire experiment independent of motion direction or eccentricity of the presented moving stimulus. Head movements were elicited on the same plane as the moving stimulus only for stimuli moving in depth covering the entire visual field. A correlation showed a positive relationship between dizziness and vection duration and between general discomfort and sway. Identifying where in the visual field motion presented to an individual causes the least amount of VR sickness without losing vection and presence can guide development for Virtual Reality games, training and treatment programmes.

1996 ◽  
Vol 13 (5) ◽  
pp. 945-953 ◽  
Author(s):  
Douglas R. W. Wylie ◽  
Barrie J. Frost

AbstractThe generation of compensatory eye movements in response to rotational head movements involves the transformation of visual-optokinetic and vestibular signals into commands controlling the appropriate eye muscles. Previously, it has been shown that the three systems (optokinetic, vestibular, and eye muscle) share a similar three-dimensional reference frame. In this report, we suggest that a peculiarity in the structure of the horizontal recti in pigeons demonstrates that the optokinetic system is organized with respect to the eye muscles rather than the vestibular canals. Measurements of the orientation of the plane for each of the lateral and medial recti were obtained. These were compared with the direction preferences of optokinetic neurons responsive to horizontal motion, namely “back” units in the nucleus of the basal optic root (nBOR), “forward” units in the pretectal nucleus lentiformis mesencephali (LM), and “vertical axis” (VA) Purkinje cells in the flocculus. The average direction preference of LM neurons excited in response to forward (temporal to nasal) visual motion, and VA Purkinje cells in response to optokinetic motion in the ipsilateral visual field was approximately parallel to the visual horizontal. This corresponded to the orientation of the medial rectus, which was also approximately parallel to the visual horizontal. The average direction preference of nBOR neurons excited in response to backward (nasal to temporal) visual motion, and VA Purkinje cells in response to optokinetic motion in the contralateral visual field was approximately 20–30 deg down from the visual horizontal. The orientation of the lateral rectus was also approximately 20–30 deg down from the visual horizontal. These data suggest that the incoming optokinetic signals are organized with respect to the outgoing extraocular muscle commands.


2019 ◽  
pp. 249-254
Author(s):  
Kenneth J. Ciuffreda ◽  
MH Esther Han ◽  
Barry Tannen

Visual snow syndrome (VSS) is a relatively rare, unusual, and disturbing abnormal visual condition. The individual perceives “visual snow” (VS) throughout the entire visual field, as well as other abnormal visual phenomena (e.g., photopsia). Only relatively recently has treatment been proposed (e.g., chromatic filters) in adults with VSS, but rarely in the pediatric VSS population (i.e., medications). In this paper, we present three well-documented cases of VSS in children, including their successful neuro-optometric therapeutic interventions (i.e., chromatic filters and saccadic-based vision therapy)


2021 ◽  
Author(s):  
Valentin Holzwarth ◽  
Johannes Schneider ◽  
Joshua Handali ◽  
Joy Gisler ◽  
Christian Hirt ◽  
...  

AbstractInferring users’ perceptions of Virtual Environments (VEs) is essential for Virtual Reality (VR) research. Traditionally, this is achieved through assessing users’ affective states before and after being exposed to a VE, based on standardized, self-assessment questionnaires. The main disadvantage of questionnaires is their sequential administration, i.e., a user’s affective state is measured asynchronously to its generation within the VE. A synchronous measurement of users’ affective states would be highly favorable, e.g., in the context of adaptive systems. Drawing from nonverbal behavior research, we argue that behavioral measures could be a powerful approach to assess users’ affective states in VR. In this paper, we contribute by providing methods and measures evaluated in a user study involving 42 participants to assess a users’ affective states by measuring head movements during VR exposure. We show that head yaw significantly correlates with presence, mental and physical demand, perceived performance, and system usability. We also exploit the identified relationships for two practical tasks that are based on head yaw: (1) predicting a user’s affective state, and (2) detecting manipulated questionnaire answers, i.e., answers that are possibly non-truthful. We found that affective states can be predicted significantly better than a naive estimate for mental demand, physical demand, perceived performance, and usability. Further, manipulated or non-truthful answers can also be estimated significantly better than by a naive approach. These findings mark an initial step in the development of novel methods to assess user perception of VEs.


2021 ◽  
Vol 90 ◽  
pp. 239-244
Author(s):  
Yunju Lee ◽  
Rachel Badr ◽  
Brianna Bove ◽  
Patrick Jewett ◽  
Meri Goehring

Author(s):  
Aaron Crowson ◽  
Zachary H. Pugh ◽  
Michael Wilkinson ◽  
Christopher B. Mayhorn

The development of head-mounted display virtual reality systems (e.g., Oculus Rift, HTC Vive) has resulted in an increasing need to represent the physical world while immersed in the virtual. Current research has focused on representing static objects in the physical room, but there has been little research into notifying VR users of changes in the environment. This study investigates how different sensory modalities affect noticeability and comprehension of notifications designed to alert head-mounted display users when a person enters his/her area of use. In addition, this study investigates how the use of an orientation type notification aids in perception of alerts that manifest outside a virtual reality users’ visual field. Results of a survey indicated that participants perceived the auditory modality as more effective regardless of notification type. An experiment corroborated these findings for the person notifications; however, the visual modality was in practice more effective for orientation notifications.


2021 ◽  
pp. 1-10
Author(s):  
Yufeng Lin ◽  
Mukul Mukherjee ◽  
Nicholas Stergiou ◽  
Jung Hung Chien

BACKGROUND: The mastoid vibration (MV) has been used to investigate unilateral vestibular dysfunction by inducing nystagmus. Additionally, this MV can be used to quantify the effect of deterioration by aging on the vestibular system during walking. Could such MV be used to assess the uni/bilateral vestibular deterioration by aging during standing? OBJECTIVE: This study attempted to determine the feasibility of using MV for identifying the uni/bilateral vestibular deterioration by aging during standing. METHODS: Fifteen young and ten old adults’ balance control patterns were assessed by three random MV conditions: 1) No MV; 2) Unilateral MV; 3) Bilateral MV. The dependent variables were the 95% confidence ellipse areas and the sample entropy values, which were calculated based on the center of gravity displacement within each condition. RESULTS: Significant main effects of MV and aging were found on all outcome variables. A significant interaction between aging and different MV types was observed in the 95% confidence ellipse area (p = 0.002) and the length of the short axis (anterior-posterior direction, p = 0.001). CONCLUSIONS: We concluded that the MV could be used to identify different vestibular dysfunctions, specifically in old adults.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


2009 ◽  
Vol 102 (1) ◽  
pp. 513-522 ◽  
Author(s):  
Anand C. Joshi ◽  
Matthew J. Thurtell ◽  
Mark F. Walker ◽  
Alessandro Serra ◽  
R. John Leigh

The human ocular following response (OFR) is a preattentive, short-latency visual-field–holding mechanism, which is enhanced if the moving stimulus is applied in the wake of a saccade. Since most natural gaze shifts incorporate both saccadic and vergence components, we asked whether the OFR was also enhanced during vergence. Ten subjects viewed vertically moving sine-wave gratings on a video monitor at 45 cm that had a temporal frequency of 16.7 Hz, contrast of 32%, and spatial frequency of 0.17, 0.27, or 0.44 cycle/deg. In Fixation/OFR experiments, subjects fixed on a white central dot on the video monitor, which disappeared at the beginning of each trial, just as the sinusoidal grating started moving up or down. We measured the change in eye position in the 70- to 150-ms open-loop interval following stimulus onset. Group mean downward responses were larger (0.14°) and made at shorter latency (85 ms) than upward responses (0.10° and 96 ms). The direction of eye drifts during control trials, when gratings remained stationary, was unrelated to the prior response. During vergence/OFR experiments, subjects switched their fixation point between the white dot at 45 cm and a red spot at 15 cm, cued by the disappearance of one target and appearance of the other. When horizontal vergence velocity exceeded 15°/s, motion of sinusoidal gratings commenced and elicited the vertical OFR. Subjects showed significantly ( P < 0.001) larger OFR when the moving stimulus was presented during convergence (group mean increase of 46%) or divergence (group mean increase of 36%) compared with following fixation. Since gaze shifts between near and far are common during natural activities, we postulate that the increase of OFR during vergence movements reflects enhancement of early cortical motion processing, which serves to stabilize the visual field as the eyes approach their new fixation point.


2006 ◽  
Vol 95 (6) ◽  
pp. 3712-3726 ◽  
Author(s):  
Frédéric V. Barthélemy ◽  
Ivo Vanzetta ◽  
Guillaume S. Masson

Visual neurons integrate information over a finite part of the visual field with high selectivity. This classical receptive field is modulated by peripheral inputs that play a role in both neuronal response normalization and contextual modulations. However, the consequences of these properties for visuomotor transformations are yet incompletely understood. To explore those, we recorded short-latency ocular following responses in humans to large center-only and center-surround stimuli. We found that eye movements are triggered by a mechanism that integrates motion over a restricted portion of the visual field, the size of which depends on stimulus contrast and increases as a function of time after response onset. We also found evidence for a strong nonisodirectional center-surround organization, responsible for normalizing the central, driving input so that motor responses are set to their most linear contrast dynamics. Such response normalization is delayed about 20 ms relative to tracking onset, gradually builds up over time, and is partly tuned for surround orientation/direction. These results outline the spatiotemporal organization of a behavioral receptive field, which might reflect a linear integration among subpopulations of cortical visual motion detectors.


Sign in / Sign up

Export Citation Format

Share Document