Wood Anatomy of Jacaranda (Bignoniaceae): Systematic Relationships in Sections Monolobos and Dilobos as Suggested by Twig and Stem Wood Rays

IAWA Journal ◽  
1997 ◽  
Vol 18 (4) ◽  
pp. 369-383 ◽  
Author(s):  
Gracielza Dos Santos ◽  
Regis B. Miller

This report provides a generic description of the stern wood anatomy of 15 species of Jacaranda from seetions Monolobos and Dilobos. In Monolobos (excluding J. copaia), the rays are homocellular and exclusively uniseriate, occasionally with a small biseriate portion. In Dilobos, the rays are heterocellular and 2-3(-4) cells wide. To verify the differences in ray structure, 27 species of twig specimens were examined and compared with stern specimens of the same seetion. The wood anatomy corroborates morphological evidence that suggests partitioning of Jacaranda into two distinct seetions and supports the hypothesis that section Dilobos is primitive. The wood anatomy of Jacaranda copaia is distinct from that of other species in the genus. The vessels are larger in diameter and fewer per square millimetre, the vessel elements and fibres are longer, and the number of cells per parenchyma strand is higher. In addition, the rays are fewer per millimetre, taller, and homocellular to slightly heterocellular, with one irregular row of square cells, 2-3(-4) cells wide. Jacaranda copaia seems to be intermediate between seetions Monolobos and Dilobos.

IAWA Journal ◽  
1997 ◽  
Vol 18 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Sílvia R. Machado ◽  
Veronica Angyalossy-Alfonso ◽  
Berta L. de Morretes

Styrax camporum Pohl is a shrub common in the cerrado vegetation of south-eastern Brazil. Root and stem wood in Styrax camporum differ quantitatively and qualitatively. Quantitative differences follow normal expectations: roots have wider and longer vessel elements, a lower vessel frequency, a lower ray frequency, and wider rays. Qualitative features of the roots are: simple perforation plates, vestured pits, and septate libriform fibres; qualitative features of the stems are: multiple perforation plates, non-vestured pits, and non-septate fibre-tracheids. Based on generally accepted evolutionary trends, root wood of Styrax camporum has more specialized features than stem wood. Additional comparative studies of stem and root anatomy are needed to determine if such differences between root and stem anatomy are widespread, and consistent with the lines of specialization observed in monocotyledons.


Rodriguésia ◽  
2014 ◽  
Vol 65 (3) ◽  
pp. 567-576 ◽  
Author(s):  
Carmen Regina Marcati ◽  
Leandro Roberto Longo ◽  
Alex Wiedenhoeft ◽  
Claudia Franca Barros

Root and stem wood anatomy of C. myrianthum (Verbenaceae) from a semideciduous seasonal forest in Botucatu municipality (22º52’20”S and 48º26’37”W), São Paulo state, Brazil, were studied. Growth increments demarcated by semi-ring porosity and marginal bands of axial parenchyma were observed in the wood of both root and stem. Many qualitative features were the same in both root and stem: fine helical thickenings, and simple and multiple perforation plates in vessel elements; large quantities of axial parenchyma in the growth rings, grading from marginal bands and confluent forming irregular bands in earlywood to lozenge aliform in latewood; axial parenchyma cells forked, and varied wall projections and undulations; septate fibres; forked and diverse fibre endings. Quantitative features differing between root and stem wood were evaluated using student’s t-test, and vessel frequency, vessel element length, vessel diameter, ray height, and vulnerability and mesomorphy indices differed significantly. Root wood had lower frequency of vessels, narrower and longer vessel elements, and taller rays than wood of the stem. The calculated vulnerability and mesomorphy indices indicated that C. myrianthum plants are mesomorphic. Roots seem to be more susceptible to water stress than the stem.


IAWA Journal ◽  
2008 ◽  
Vol 29 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Pat Denne ◽  
Peter Gasson

Differences in ray structure between root- and stem-wood of softwoods can cause confusion in identifying roots using keys based on stem-wood anatomy. Comparison of root- and stem-wood rays of Larix decidua showed root-wood had fewer ray tracheids, taller, wider but shorter ray parenchyma cells, and larger cross-field pits than stem-wood. The implications of these differences are considered in relation to the identification and function of roots.


1983 ◽  
Vol 5 (5) ◽  
pp. 161
Author(s):  
José Newton Cardoso Marchiori

This paper deals with the description of general, macroscopic and microscopic anatomy of Colletia paradoxa (Spreng.) Escalante, an aphyllous and xerophilous shrub from Rio Grande do Sul (Brazil). Pores of very small diameter, very short vessel elements, spiral thickenings and simple perforation plates in vessels, non sptate libriform fibers, scanty paratracheal axial paranchyma, and Heterogeneous II rays were observed in the wood.. Perforated cells are also common in rays. The presence of perforated ray cells and anatomical features of the vessel elements are discussed with respect to eco-physiological aspect of the plant and wood anatomy literature.


IAWA Journal ◽  
2011 ◽  
Vol 32 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Barbara Lachenbruch

Student activities and instructor-made models are described to facilitate and encourage other instructors to develop their own appropriate activities and models for teaching the three-dimensional structure of wood. The teaching activities include making several annual rings with straws pushed into clay, drawing wood’s structure onto a piece of paper that is folded to resemble a wedge, and assigning students to make an anatomical model to present in class. Plans are given for instructor-made models (1:500 scale) of tracheids, vessel elements, and a hardwood ‘fiber’ to demonstrate their relative dimensions and geometries. These models also include a set of outerwood and corewood tracheids onto which the microfibril angle is traced, and one tracheid on which bordered and cross-field pitting are shown. Plans are then given for a bordered pit pair with its membrane (1:6300 scale). The last model demonstrates the Hagen-Poiseuille equation with an array of 16 conduits that together have the same potential flow as one conduit of two times their diameter. The use of these models has enlivened the classroom and helped students to more readily grasp wood anatomy and function.


Botany ◽  
2017 ◽  
Vol 95 (5) ◽  
pp. 521-530
Author(s):  
Camilla Rozindo Dias Milanez ◽  
Carmen Regina Marcati ◽  
Silvia Rodrigues Machado

Family Melastomataceae is an important component of the Brazilian Cerrado flora, inhabiting different environments from those with well-drained soils to swamp soil sites. Several members of this family are recognized as aluminum (Al)-accumulating. We studied the wood anatomy of six species of Melastomataceae (Miconia albicans (Sw.) Triana, M. fallax DC., M. chamissois Naudin, M. ligustroides (DC.) Naudin, Microlepis oleaefolia (DC.) Triana, Rhynchanthera dichotoma DC.), growing in different environments of Cerrado, exploring the occurrence of trabeculae and Al-accumulation sites. We processed the material following the usual techniques in wood anatomy and histochemistry. We used a chrome azurol-S spot-test in fresh material to detect Al-accumulation. The common features were diffuse porosity, vessel elements with simple perforation plates and vestured pits, abundant parenchyma-like fiber bands and septate fibers, axial parenchyma scanty to vasicentric, and heterocellular rays. The presence of trabeculae in vessel elements, septa in parenchyma cells, and aluminum in the G-layer of the gelatinous fiber walls, in the septa of fibers, in cambial initials and derivatives cell walls, and in the vacuole of ray cells are recorded for the first time for Melastomataceae. The results of this study indicate an additional role for gelatinous fibers in Al-accumulation, and offer a new perspective on Al-compartmentalization in the wood cells from Cerrado species.


IAWA Journal ◽  
1999 ◽  
Vol 20 (4) ◽  
pp. 419-429 ◽  
Author(s):  
G.K. Psaras ◽  
I. Sofroniou

Root and stern wood of the Mediterranean summergreen Capparis spinosa L. was studied. Wood anatomical features favour high hydraulic conductivity, which is necessary for maintaining the high midday stomatal conductance and rates of photosynthesis observed in this plant. Xylem conduits of both stern and root consist of wide and short vessel elements with simple perforation plates. Vessel grouping in the stern secures xylem safety against cavitations. The plant would be highly vulnerable to cavitations due to freezing conditions, although these are rare during the Mediterranean winter. Thus, the anatomical features of the plant, which does not seem to suffer from water stress though growing entirely during the Mediterranean summer drought, are compatible with its adaptive strategy. The significant amount of minerals found in the root vessels, and the abundant starch grains of the wood might be involved in a possible osmotic shifting of water in the xylem.


IAWA Journal ◽  
1997 ◽  
Vol 18 (3) ◽  
pp. 229-245 ◽  
Author(s):  
Vanessa E.T.M. Ashworth ◽  
Gracielza Dos Santos

Secondary xylem characteristics were compared in four species of Phoradendron Nutt. (Viscaceae) native to California. All have extremely short, thick-walled vessel elements with simple perforation plates. They also share high vessel density, radial vessel arrangement, thick-walled fibres, and multiseriate, heterocellular rays. The fibres show considerable intrusive growth. Features of the vessel elements (i.e. vessel dimensions, arrangement, type of wall sculpturing) and calcium oxalate crystals in the ray parenchyma cells are useful diagnostic traits to separate species. Grooved vessel walls are shared by the morphologically similar P. villosum and P. macrophyllum. Differences between these two species may reflect contrasting drought response strategies pursued by respective hosts. Vulnerability and mesomorphy ratios of the wood of P. californicum are higher than those of P. pauciflorum and P. macrophyllum. Phoradendron pauciflorum has the most xeromorphic wood of the four species studied.


Sign in / Sign up

Export Citation Format

Share Document