The Effects of Differential Protease Secretion by Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions In Vitro.

Author(s):  
S Cosgrove ◽  
N Guyot ◽  
CM Greene ◽  
NG McElvaney
Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 235-245
Author(s):  
Steven J. Cox ◽  
David L. Gunberg

Isolated hearts from 11-, 12- and 13-day rat embryos were incubated in a simple defined salt solution to which was added a variety of single substrates. Utilization of the added substrate was determined by comparing the contractile rates of the hearts in the presence and absence of the compound being tested. Of all the compounds tested only those involved in the Embden-Meyerhof glycolytic pathway were capable of maintaining cardiac contraction at a maximum rate in the 11-day heart. This was accomplished under both aerobic and anaerobic conditions. Although glycolysis remained important, the 12- and 13-day hearts exhibited a shift in dependence towards other metabolic pathways. This conclusion was based on the observations that anaerobic glycolysis could no longer maintain maximum heart rates and that a variety of non-glycolytic compounds could be utilized for contractile activity by the 12- and 13-day organs.


1983 ◽  
Vol 92 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Yukiko Iino ◽  
Tomonori Takasaka ◽  
Etsuro Hoshino ◽  
Yutaka Kaneko ◽  
Sachiko Tomioka ◽  
...  

Organic acids in the contents of the cholesteatoma sac from 28 cases were studied by gas chromatographic technique. Five volatile fatty acids (acetate, propionate, isobutyrate, butyrate and isovalerate) and lactate were detected in large amounts, which may lower the pH of the cholesteatoma content. These acids were considered to be derived from products of anaerobic microorganisms. Therefore, the contents from 12 cases were cultured anaerobically in a glove box. Obligate microorganisms were identified in 92% of the cases and Peptococcus, Bacteroides, and Clostridium species were frequently isolated. In vitro, such obligate anaerobes produced various organic acids from the cholesteatoma content. Facultatives such as Staphylococcus aureus and Proteus mirabilis produced acetate in the content under aerobic and anaerobic conditions, whereas no organic acid was produced by Pseudomonas aeruginosa. Organic acids in the cholesteatoma content could be fermentative products made by the microorganisms, anaerobes and facultatives, which use the content as a substrate for acid production.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Yingchao Zhang ◽  
Chuan-min Zhou ◽  
Qinqin Pu ◽  
Qun Wu ◽  
Shirui Tan ◽  
...  

ABSTRACT Pseudomonas aeruginosa, one of the most common pathogens in hospital-acquired infections, is tightly controlled by a multilayered regulatory network, including the quorum sensing system (QS), the type VI secretion system (T6SS), and resistance to host immunity. We found that the P. aeruginosa 3880 (PA3880) gene, which encodes an unknown protein, acts as a regulator of anaerobic metabolism in response to oxidative stress and virulence in P. aeruginosa. More than 30 PA3880 homologs were found in other bacterial genomes, indicating that PA3880 is widely distributed in the Bacteria kingdom as a highly conserved gene. Deletion of the PA3880 gene changed the expression levels of more than 700 genes, including a group of virulence genes, under both aerobic and anaerobic conditions. To further study the mechanisms of PA3880-mediated regulation in virulence, we utilized a bacterial two-hybrid assay and found that the PA3880 protein interacted directly with QS regulator MvfR and anaerobic regulator Anr. Loss of the PA3880 protein significantly blunted the pathogenicity of P. aeruginosa, resulting in increased host survival, decreased bacterial burdens, reduced inflammatory responses, and fewer lung injuries in challenged mice hosts. Mechanistically, we found that Cys44 was a critical site for the full function of PA3880 in influencing alveolar macrophage phagocytosis and bacterial clearance. We also found that AnvM directly interacted with host receptors Toll-like receptor 2 (TLR2) and TLR5, which might lead to activation of the host immune response. Hence, we gave the name AnvM (anaerobic and virulence modulator) to the PA3880 protein. This characterization of AnvM could help to uncover new targets and strategies to treat P. aeruginosa infections. IMPORTANCE Infections by Pseudomonas aeruginosa, one of the most frequently isolated human pathogens, can create huge financial burdens. However, knowledge of the molecular mechanisms involved in the pathogenesis of P. aeruginosa remains elusive. We identified AnvM as a novel regulator of virulence in P. aeruginosa. Deletion of anvM altered the expression levels of more than 700 genes under aerobic and anaerobic conditions, including quorum sensing system genes and oxidative stress resistance genes. AnvM directly interacted with MvfR and Anr, thus regulating their downstream genes. More importantly, AnvM directly bound to TLR2 and TLR5, which turn on the host immune response. These findings provide insights into the significance of AnvM homologs in pathogenic bacteria and suggest a potential drug target against bacterial infection.


Parasitology ◽  
1978 ◽  
Vol 77 (3) ◽  
pp. 255-271 ◽  
Author(s):  
P. F. V. Ward ◽  
N. S. Huskisson

SummaryA comparison was made of the major excretory products when adult Haemonchus contortus worms were incubated with D-[U-14C]glucose under aerobic and anaerobic conditions. Catabolites measured were propan-1-ol, acetate, n-propionate and CO2 and the only major difference was that nearly twice as much CO2 both in terms of quantity and radioactivity was excreted under aerobic than anaerobic conditions. The worms were also much more physically active under aerobic conditions. When worms were incubated under aerobic conditions with increasing amounts of fluoroacetate their CO2 production was progressively reduced to the anaerobic level. Their movement and their ability to clump together was also progressively reduced. After aerobic incubation with fluoroacetate and D-[U-14C]g1ucose the quantity and radioactivity of citrate within worms increased greatly. When worms were similarly incubated anaerobically no increase in citrate occurred, no radioactivity was associated with the citrate and the worms appeared physically unaffected. When worms were incubated aerobically with fluoro[1-14C]acetate they produced radioactive fluorocitrate.


2004 ◽  
Vol 186 (23) ◽  
pp. 8018-8025 ◽  
Author(s):  
Victoria R. Sutton ◽  
Erin L. Mettert ◽  
Helmut Beinert ◽  
Patricia J. Kiley

ABSTRACT The ability of FNR to sense and respond to cellular O2 levels depends on its [4Fe-4S]2+ cluster. In the presence of O2, the [4Fe-4S]2+ cluster is converted to a [2Fe-2S]2+ cluster, which inactivates FNR as a transcriptional regulator. In this study, we demonstrate that ∼2 Fe2+ ions are released from the reaction of O2 with the [4Fe-4S]2+ cluster. Fe2+ release was then used as an assay of reaction progress to investigate the rate of [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion in vitro. We also found that there was no detectable difference in the rate of O2-induced cluster conversion for FNR free in solution compared to its DNA-bound form. In addition, the rate of FNR inactivation was monitored in vivo by measuring the rate at which transcriptional regulation by FNR is lost upon the exposure of cells to O2; a comparison of the in vitro and in vivo rates of conversion suggests that O2-induced cluster conversion is sufficient to explain FNR inactivation in cells. FNR protein levels were also compared for cells grown under aerobic and anaerobic conditions.


1971 ◽  
Vol 26 (8) ◽  
pp. 780-787 ◽  
Author(s):  
H. P. Krause ◽  
H. Probst ◽  
Fr. Schneider

Interrelations between energy metabolism and cell division were studied with permanent in vitro cultured Ehrlich-ascites-tumor-cells during the second passage in vitro. The following parameters were estimated under aerobic and anaerobic conditions and in the presence of dinitrophenol:DNA- and RNA-synthesis measured by the incorporation of 14C-thymidine and 14C-uridine; rate of glycolysis measured by lactate production; permeation of 14C-2-aminoisobutyric acid; ATP level of the cells; cell division and number of dead cells.The following results were obtained: Cell division and thymidine incorporation are obligate oxygen dependent processes. It was not possible to decide, whether respiration alone can maintain cell propagation. Respiration alone and glycolysis alone cannot maintain a normal level of ATP. Only an intact respiration can maintain the penetration of 2-aminoiso-butyric acid. Glycolysis alone and respiration alone can supply the energy for the incorporation of uridine. The incorporation of uridine is also influenced by oxygen dependent reactions not related to energy production. The number of dead cells does not rise significantly under anaerobic conditions.


2002 ◽  
Vol 46 (5) ◽  
pp. 1561-1563 ◽  
Author(s):  
David H. Wright ◽  
Brent W. Gunderson ◽  
Laurie B. Hovde ◽  
Gigi H. Ross ◽  
Khalid H. Ibrahim ◽  
...  

ABSTRACT Six strains of staphylococci were exposed to levofloxacin, moxifloxacin, or trovafloxacin in an in vitro pharmacodynamic model under both aerobic and anaerobic conditions. Each agent demonstrated a rapid 3-log10 kill versus susceptible isolates regardless of condition. Against clinical isolates with reduced susceptibility, regrowth occurred by 24 h and was frequently associated with further increases in MICs.


Sign in / Sign up

Export Citation Format

Share Document